cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080419 Triangle of generalized Chebyshev coefficients.

Original entry on oeis.org

1, 4, 1, 15, 7, 1, 54, 36, 10, 1, 189, 162, 66, 13, 1, 648, 675, 360, 105, 16, 1, 2187, 2673, 1755, 675, 153, 19, 1, 7290, 10206, 7938, 3780, 1134, 210, 22, 1, 24057, 37908, 34020, 19278, 7182, 1764, 276, 25, 1, 78732, 137781, 139968, 91854, 40824, 12474, 2592
Offset: 1

Views

Author

Paul Barry, Feb 19 2003

Keywords

Comments

Second binomial transform of 'pruned' Pascal triangle Binomial(i+1,j+1), (i,j>=0).

Examples

			Rows are:
{1},
{4,1},
{15,7,1},
{54,36,10,1},
{189,162,66,13,1},
...
For example, 10 = 7+3*1, 66 = 36+3*10.
		

Crossrefs

Columns include A006234, A080420, A080421, A080422, A080423.

Programs

  • PARI
    T(n, k) = if (k==1, (n+2)*3^(n-2), if (k==n, 1, if (k < n, T(n-1, k-1) + 3*T(n-1, k), 0)));
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 15 2018

Formula

T(n,1) = A006234(n+2), T(n,n) = 1, T(n,k) = T(n-1,k-1) + 3*T(n-1,k), T(n,k)=0 for k>n. - corrected by Michel Marcus, Apr 15 2018
As a square array, T1(n, k)= (n+3k)3^n Product{j=1..(k-1), n+j}/(3k(k-1)!) (k>=1, n>=0).