A080419 Triangle of generalized Chebyshev coefficients.
1, 4, 1, 15, 7, 1, 54, 36, 10, 1, 189, 162, 66, 13, 1, 648, 675, 360, 105, 16, 1, 2187, 2673, 1755, 675, 153, 19, 1, 7290, 10206, 7938, 3780, 1134, 210, 22, 1, 24057, 37908, 34020, 19278, 7182, 1764, 276, 25, 1, 78732, 137781, 139968, 91854, 40824, 12474, 2592
Offset: 1
Examples
Rows are: {1}, {4,1}, {15,7,1}, {54,36,10,1}, {189,162,66,13,1}, ... For example, 10 = 7+3*1, 66 = 36+3*10.
Programs
-
PARI
T(n, k) = if (k==1, (n+2)*3^(n-2), if (k==n, 1, if (k < n, T(n-1, k-1) + 3*T(n-1, k), 0))); tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 15 2018
Formula
T(n,1) = A006234(n+2), T(n,n) = 1, T(n,k) = T(n-1,k-1) + 3*T(n-1,k), T(n,k)=0 for k>n. - corrected by Michel Marcus, Apr 15 2018
As a square array, T1(n, k)= (n+3k)3^n Product{j=1..(k-1), n+j}/(3k(k-1)!) (k>=1, n>=0).
Comments