A308293 Lexicographically earliest sequence of positive terms such that a(1) = 1, a(2) = 2, and for any n > 0, (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))) is unique.
1, 2, 1, 1, 1, 2, 3, 1, 1, 3, 1, 4, 1, 1, 4, 5, 1, 1, 5, 1, 2, 4, 6, 1, 1, 6, 1, 4, 6, 2, 1, 6, 2, 7, 1, 1, 7, 1, 8, 1, 1, 8, 3, 1, 7, 8, 1, 2, 5, 8, 1, 9, 1, 1, 9, 3, 1, 8, 9, 1, 3, 6, 10, 1, 1, 10, 1, 5, 8, 2, 10, 1, 8, 10, 1, 11, 1, 1, 11, 4, 1, 9, 10, 1
Offset: 1
Keywords
Examples
The first terms, alongside (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))), are: n a(n) (abs(a(n+2)-a(n)),abs(a(n+2)-a(n+1))) -- ---- ------------------------------------- 1 1 (0,1) 2 2 (1,0) 3 1 (0,0) 4 1 (1,1) 5 1 (2,1) 6 2 (1,2) 7 3 (2,0) 8 1 (2,2) 9 1 (0,2) 10 3 (1,3) 11 1 (0,3) 12 4 (3,0) 13 1 (3,3) 14 1 (4,1) 15 4 (3,4)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Colored scatterplot of (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))) for n = 1..32702782 (where the hue is function of n)
- Rémy Sigrist, C program for A308293
Programs
-
C
See Links section.
Comments