cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080584 A run of 3*2^n 0's followed by a run of 3*2^n 1's, for n=0, 1, 2, ...

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 23 2003

Keywords

Crossrefs

Equals A080586 - 1.

Programs

  • Maple
    f := (c,n)->seq(c,i = 1..3*2^n); [f(0,0),f(1,0),f(0,1),f(1,1),f(0,2),f(1,2),f(0,3),f(1,3)]; f;
  • Mathematica
    Flatten[Table[{PadRight[{},3*2^n,0],PadRight[{},3*2^n,1]},{n,0,4}]] (* Harvey P. Dale, Jun 01 2012 *)

Formula

a(n) = (1 - (-1)^A079944(A002264(n)) )/2, A079944(A002264(n))=floor(log[2](4*(floor((n+6)/3))/3)) - floor(log[2](floor((n+6)/3))) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003
Also a(n) = A079944(A002264(n)) = floor(log[2](4*(floor((n+6)/3))/3)) - floor(log[2](floor((n+6)/3))) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003