cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A080587 Partial sums of A080586.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 91, 93, 95, 97, 99, 101
Offset: 0

Views

Author

N. J. A. Sloane, Feb 23 2003

Keywords

Programs

  • Mathematica
    Accumulate[Flatten[Table[{PadRight[{},3*2^n,1],PadRight[{},3*2^n,2]},{n,0,4}]]] (* Harvey P. Dale, May 04 2014 *)

Formula

Also: a(n) = n-2+3*2^A000523(A002264(n+6)/2)*(1-3*A080584(n))+A080584(n)*(n+7). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003
Also: a(n) = 3*2^(A000523(A002264(n+6))-1)*(4-3*A080586(n))+A080586(n)*(n+7)-9. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003

A080584 A run of 3*2^n 0's followed by a run of 3*2^n 1's, for n=0, 1, 2, ...

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 23 2003

Keywords

Crossrefs

Equals A080586 - 1.

Programs

  • Maple
    f := (c,n)->seq(c,i = 1..3*2^n); [f(0,0),f(1,0),f(0,1),f(1,1),f(0,2),f(1,2),f(0,3),f(1,3)]; f;
  • Mathematica
    Flatten[Table[{PadRight[{},3*2^n,0],PadRight[{},3*2^n,1]},{n,0,4}]] (* Harvey P. Dale, Jun 01 2012 *)

Formula

a(n) = (1 - (-1)^A079944(A002264(n)) )/2, A079944(A002264(n))=floor(log[2](4*(floor((n+6)/3))/3)) - floor(log[2](floor((n+6)/3))) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003
Also a(n) = A079944(A002264(n)) = floor(log[2](4*(floor((n+6)/3))/3)) - floor(log[2](floor((n+6)/3))) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003
Showing 1-2 of 2 results.