cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080637 a(n) is the smallest positive integer which is consistent with the sequence being monotonically increasing and satisfying a(1)=2, a(a(n)) = 2n+1 for n > 1.

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 96, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

N. J. A. Sloane and Benoit Cloitre, Feb 28 2003

Keywords

Comments

Sequence is the unique monotonic sequence satisfying a(a(n)) = 2n+1.
Except for the first term, numbers (greater than 2) whose binary representation starts with 11 or ends with 1. - Yifan Xie, May 26 2022

Examples

			From _Yifan Xie_, May 02 2022: (Start)
a(8) = 12 because 2*2^2 <= 8 < 3*2^2, hence a(8) = 8 + 2^2 = 12;
a(13) = 19 because 3*2^2 <= 13 < 4*2^2, hence a(13) = 2*(13 - 2^2) + 1 = 19. (End)
		

Crossrefs

Except for first term, same as A079905. Cf. A079000.
A007378, A079905, A080637, A080653 are all essentially the same sequence.
Equals A007378(n+1)-1. First differences give A079882.
Unique monotonic sequence of positive integers satisfying a(a(n)) = k*(n-1) + 3: this sequence (k=2), A003605 (k=3), A353651 (k=4), A353652 (k=5), A353653 (k=6).

Programs

  • Maple
    t := []; for k from 0 to 6 do for j from -2^k to 2^k-1 do t := [op(t), 4*2^k - 1 + 3*j/2 + abs(j)/2]; od: od: t;
  • Mathematica
    b[n_] := b[n] = If[n<4, n+1, If[OddQ[n], b[(n-1)/2+1]+b[(n-1)/2], 2b[n/2]]];
    a[n_] := b[n+1]-1;
    a /@ Range[70] (* Jean-François Alcover, Oct 31 2019 *)

Formula

a(3*2^k - 1 + j) = 4*2^k - 1 + 3*j/2 + |j|/2 for k >= 0, -2^k <= j < 2^k.
a(2n+1) = 2*a(n) + 1, a(2n) = a(n) + a(n-1) + 1.
From Yifan Xie, May 02 2022: (Start)
For n in the range 2*2^i <= n < 3*2^i, for i >= 0:
a(n) = n + 2^i.
a(n) = 1 + a(n-1).
Otherwise, for n in the range 3*2^i <= n < 4*2^i, for i >= 0:
a(n) = 2*(n - 2^i) + 1.
a(n) = 2 + a(n-1). (End)