A080646 a(1) = 3; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "if n is a member of the sequence then a(n) is divisible by 3".
3, 4, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 28, 32, 36, 40, 44, 48, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168
Offset: 1
Links
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308)
- Index entries for sequences of the a(a(n)) = 2n family
Formula
For k>=2 and i=0, ..., 4^k/2, a((4/3)*(4^(k-1)-1) + i) = (5*4^k-8)/6 + i, a((5*4^k-8)/6 + i) = (4/3)*(4^k-1) + 4*i. - N. J. A. Sloane, Mar 02 2003
{a(a(n))} = {4i, i >= 2}.