A080652 a(1)=2; for n>1, a(n)=a(n-1)+3 if n is already in the sequence, a(n)=a(n-1)+2 otherwise.
2, 5, 7, 9, 12, 14, 17, 19, 22, 24, 26, 29, 31, 34, 36, 38, 41, 43, 46, 48, 50, 53, 55, 58, 60, 63, 65, 67, 70, 72, 75, 77, 79, 82, 84, 87, 89, 92, 94, 96, 99, 101, 104, 106, 108, 111, 113, 116, 118, 121, 123, 125, 128, 130, 133, 135, 137, 140, 142, 145
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Benoit Cloitre, A study of a family of self-referential sequences, arXiv:2506.18103 [math.GM], 2025. See p. 7.
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- Robbert Fokkink and Gandhar Joshi, On Cloitre's hiccup sequences, arXiv:2507.16956 [math.CO], 2025. See pp. 3, 9.
Programs
-
Magma
[Floor(n*(1+Sqrt(2)) + 1/(1+(1+Sqrt(2)))): n in [1..60]]; // Vincenzo Librandi, Oct 02 2018
-
Mathematica
a[1] = 2; a[n_] := a[n] = If[MemberQ[Array[a, n-1], n], a[n-1] + 3, a[n-1] + 2]; Array[a, 60] (* Jean-François Alcover, Oct 01 2018 *) Table[Floor[n (1 + Sqrt[2]) + 1 / (1 + (1 + Sqrt[2]))], {n, 60}] (* Vincenzo Librandi, Oct 02 2018 *)
-
PARI
a(n) = my(r=sqrt(2)+1); (r*(r+1)*n+1)\(r+1); \\ Altug Alkan, Oct 01 2018
Formula
a(n) = floor(n*r + 1/(1+r)) where r = 1+sqrt(2).
Comments