cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080652 a(1)=2; for n>1, a(n)=a(n-1)+3 if n is already in the sequence, a(n)=a(n-1)+2 otherwise.

Original entry on oeis.org

2, 5, 7, 9, 12, 14, 17, 19, 22, 24, 26, 29, 31, 34, 36, 38, 41, 43, 46, 48, 50, 53, 55, 58, 60, 63, 65, 67, 70, 72, 75, 77, 79, 82, 84, 87, 89, 92, 94, 96, 99, 101, 104, 106, 108, 111, 113, 116, 118, 121, 123, 125, 128, 130, 133, 135, 137, 140, 142, 145
Offset: 1

Views

Author

N. J. A. Sloane, Mar 23 2003

Keywords

Comments

In the Fokkink-Joshi paper, this sequence is the Cloitre (0,2,3,2)-hiccup sequence. - Michael De Vlieger, Jul 29 2025

Crossrefs

Cf. A080455-A080458, A080036, A080037. Apart from start, equals A064437 - 1.

Programs

  • Magma
    [Floor(n*(1+Sqrt(2)) + 1/(1+(1+Sqrt(2)))): n in [1..60]]; // Vincenzo Librandi, Oct 02 2018
  • Mathematica
    a[1] = 2;
    a[n_] := a[n] = If[MemberQ[Array[a, n-1], n], a[n-1] + 3, a[n-1] + 2];
    Array[a, 60] (* Jean-François Alcover, Oct 01 2018 *)
    Table[Floor[n (1 + Sqrt[2]) + 1 / (1 + (1 + Sqrt[2]))], {n, 60}] (* Vincenzo Librandi, Oct 02 2018 *)
  • PARI
    a(n) = my(r=sqrt(2)+1); (r*(r+1)*n+1)\(r+1); \\ Altug Alkan, Oct 01 2018
    

Formula

a(n) = floor(n*r + 1/(1+r)) where r = 1+sqrt(2).