A080665 Squares that are the sum of 3 consecutive primes.
49, 121, 841, 961, 1849, 22801, 24649, 36481, 43681, 47089, 48841, 69169, 96721, 128881, 134689, 165649, 243049, 284089, 316969, 319225, 405769, 609961, 664225, 677329, 707281, 737881, 776161, 863041, 919681, 994009, 1026169, 1038361
Offset: 1
Examples
13+17+19 = 49
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A062703.
Programs
-
Mathematica
PrevPrim[n_] := Block[{k = n - 1}, While[ !PrimeQ[k], k-- ]; k]; NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_] := Block[{m = Floor[n/3], t = 1}, If[PrimeQ[m], s = PrevPrim[m] + m + NextPrim[m], s = PrevPrim[ PrevPrim[m]] + PrevPrim[m] + NextPrim[m]; t = PrevPrim[m] + NextPrim[m] + NextPrim[ NextPrim[m]]]; If[s == n || t == n, True, False]]; Select[ Range[1020], f[ #^2] &]^2
-
PARI
sump1p2p3sq(n)= {sr=0; forprime(x=2,n, y=x+nextprime(x+1)+nextprime(nextprime(x+1)+1); if(issquare(y),print1(y" "); sr+=1.0/y; ) ); print(); print(sr) }
-
PARI
for(n=1,1e4,p=precprime(n^2/3);q=nextprime(p+1);t=n^2-p-q;if(isprime(t) && t==if(t>q,nextprime(q+1),precprime(p-1)), print1(n^2", "))) \\ Charles R Greathouse IV, May 26 2013
Formula
a(n) = A076304(n)^2. - Zak Seidov, May 26 2013
Extensions
Edited and extended by Robert G. Wilson v, Mar 02 2003
Offset corrected by Zak Seidov, May 26 2013
Comments