A080679 Lexicographically earliest de Bruijn cycle of length 16 (repeated indefinitely).
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0
Offset: 0
Keywords
Examples
The period is 0000100110101111.
References
- N. G. de Bruijn, A combinatorial problem, Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758-764, 1946.
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, Chap. VI, Section 2.2.
Links
- Alex Bogomolny, Lewis Carroll to Archimedes
- F. R. K. Chung, P. Diaconis and R. L. Graham, Universal cycles for combinatorial structures, Discr. Math., 110 (1992), 43-59.
- Frank Ruskey, Generate Necklaces
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Mathematica
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1},99] (* Ray Chandler, Aug 26 2015 *)
Formula
a(n) = (1/240)*{16*(n mod 16)+[(n+1) mod 16]+[(n+2) mod 16]+[(n+3) mod 16]-14*[(n+4) mod 16]+16*[(n+5) mod 16]-14*[(n+6) mod 16]+16*[(n+7) mod 16]+[(n+8) mod 16]-14*[(n+9) mod 16]+[(n+10) mod 16]+16*[(n+11) mod 16]-14*[(n+12) mod 16]+[(n+13) mod 16]+[(n+14) mod 16]+[(n+15) mod 16]}.
Periodic with period 16.