cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080692 a(n)=(-1)^(n+1)*det(M(n)) where M(n) is the n X n matrix M(i,j)=min(abs(i-j),i).

Original entry on oeis.org

0, 1, 3, 8, 18, 40, 88, 192, 400, 832, 1728, 3584, 7424, 15360, 31744, 65536, 133120, 270336, 548864, 1114112, 2260992, 4587520, 9306112, 18874368, 38273024, 77594624, 157286400, 318767104, 645922816, 1308622848, 2650800128
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2003

Keywords

Comments

A001787(n-1) is the determinant of the n X n matrix M(i,j)=min(abs(i-j),i+j)

Examples

			M(5) is [0 1 1 1 1] [1 0 1 2 2] [2 1 0 1 2] [3 2 1 0 1] [4 3 2 1 0].
		

Crossrefs

Programs

  • Mathematica
    Table[(-1)^(n+1) * Det[Table[Min[Abs[i-j], i], {i, 1, n}, {j, 1, n}]], {n, 1, 30}] (* Vaclav Kotesovec, Aug 23 2024 *)
  • PARI
    a(n)=(-1)^(n+1)*matdet(matrix(n,n,i,j,min(abs(i-j),i)))

Formula

a(n) = 2*a(n-1) + 2^floor(n-log(n)/log(2)-1) = 2*a(n-1) + A054243(n). [corrected by Vaclav Kotesovec, Aug 23 2024]
a(n) ~ 2^(n-1) * (c*(log(n) + gamma) - 1), where gamma is the Euler-Mascheroni constant A001620 and 1/2 < c < 1. Conjecture: c = 1/sqrt(2). - Vaclav Kotesovec, Aug 23 2024