A080722 a(0) = 0; for n > 0, a(n) is taken to be the smallest positive integer greater than a(n-1) which is consistent with the condition "n is a term of the sequence if and only if a(n) == 1 (mod 3)".
0, 1, 3, 4, 7, 8, 9, 10, 13, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121
Offset: 0
Links
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, preprint, 2016.
- Hsien-Kuei Hwang, Svante Janson, Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms 13:4 (2017), #47.
- Index entries for sequences of the a(a(n)) = 2n family
Programs
-
PARI
{a=0; m=[]; for(n=1,70,print1(a,","); a=a+1; if(a%3==1&&a==n,qwqw=qwqw,if(m==[], while(a%3!=1&&a==n,a++),if(m[1]==n, while(a%3!=1,a++); m=if(length(m)==1,[],vecextract(m,"2..")),if(a%3==1,a++))); m=concat(m,a)))} \\ Klaus Brockhaus, Mar 08 2003
Formula
a(a(n)) = 3*n-2, n >= 2.
Extensions
More terms from Klaus Brockhaus, Mar 08 2003