A080788 Primes that are still primes when turned upsided down.
11, 19, 61, 101, 109, 181, 199, 601, 619, 661, 1019, 1061, 1091, 1109, 1181, 1601, 1609, 1669, 1699, 1811, 1901, 1999, 6011, 6091, 6101, 6199, 6619, 6661, 6689, 6691, 6899, 6991, 10061, 10069, 10091, 10691, 10861, 10909, 11069, 11681, 11909, 16001, 16091
Offset: 1
References
- P. Giannopoulos, The Brainteasers, unpublished.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..11210 (First 1000 terms from Reinhard Zumkeller)
Programs
-
Haskell
import Data.List (unfoldr) a048890 n = a048890_list !! (n-1) a048890_list = filter f a000040_list where f x = all (`elem` [0,1,6,8,9]) ds && x' /= x && a010051 x' == 1 where x' = foldl c 0 ds c v 6 = 10*v + 9; c v 9 = 10*v + 6; c v d = 10*v + d ds = unfoldr d x d z = if z == 0 then Nothing else Just $ swap $ divMod z 10 -- Reinhard Zumkeller, Nov 18 2011
-
Python
from sympy import isprime from itertools import product def ud(s): return s[::-1].translate({ord('6'):ord('9'), ord('9'):ord('6')}) def auptod(maxdigits): alst = [] for d in range(1, maxdigits+1): for p in product("01689", repeat=d-1): if d > 1 and p[0] == "0": continue for end in "19": s = "".join(p) + end t, udt = int(s), int(ud(s)) if isprime(t) and isprime(udt): alst.append(t) return alst print(auptod(5)) # Michael S. Branicky, Nov 19 2021
Extensions
Missing 1669 and 6689 inserted by Reinhard Zumkeller, Nov 18 2011