cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080790 Binary emirps, primes whose binary reversal is a different prime.

Original entry on oeis.org

11, 13, 23, 29, 37, 41, 43, 47, 53, 61, 67, 71, 83, 97, 101, 113, 131, 151, 163, 167, 173, 181, 193, 197, 199, 223, 227, 229, 233, 251, 263, 269, 277, 283, 307, 331, 337, 349, 353, 359, 373, 383, 409, 421, 431, 433, 449, 461, 463, 479, 487, 491, 503, 509, 521
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 25 2003

Keywords

Comments

Members of A074832 that are not in A006995. - Robert Israel, Aug 31 2016

Examples

			A000040(10) = 29 -> '11101' rev '10111' -> 23 = A000040(9), therefore 29 and 23 are terms.
The prime 19 is not a term, as 19 -> '10011' rev '11001' -> 25 = 5^2; and 7 = A074832(3) is not a term because it is a binary palindrome (A006995) and therefore not different.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L; L:= convert(n,base,2); add(L[-i]*2^(i-1),i=1..nops(L)) end proc:
    filter:= proc(t) local r; if not isprime(t) then return false fi;
      r:= revdigs(t); r <> t and isprime(r) end proc:
    select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Aug 30 2016
  • Mathematica
    Select[Prime[Range[100]], (r = IntegerReverse[#, 2]) != # && PrimeQ[r] &] (* Amiram Eldar, Jul 28 2025 *)
  • Python
    from sympy import isprime
    def ok(n):
        r = int(bin(n)[2:][::-1], 2)
        return n != r and isprime(n) and isprime(r)
    print([k for k in range(600) if ok(k)]) # Michael S. Branicky, Jul 30 2022