A080790 Binary emirps, primes whose binary reversal is a different prime.
11, 13, 23, 29, 37, 41, 43, 47, 53, 61, 67, 71, 83, 97, 101, 113, 131, 151, 163, 167, 173, 181, 193, 197, 199, 223, 227, 229, 233, 251, 263, 269, 277, 283, 307, 331, 337, 349, 353, 359, 373, 383, 409, 421, 431, 433, 449, 461, 463, 479, 487, 491, 503, 509, 521
Offset: 1
Examples
A000040(10) = 29 -> '11101' rev '10111' -> 23 = A000040(9), therefore 29 and 23 are terms. The prime 19 is not a term, as 19 -> '10011' rev '11001' -> 25 = 5^2; and 7 = A074832(3) is not a term because it is a binary palindrome (A006995) and therefore not different.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Maple
revdigs:= proc(n) local L; L:= convert(n,base,2); add(L[-i]*2^(i-1),i=1..nops(L)) end proc: filter:= proc(t) local r; if not isprime(t) then return false fi; r:= revdigs(t); r <> t and isprime(r) end proc: select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Aug 30 2016
-
Mathematica
Select[Prime[Range[100]], (r = IntegerReverse[#, 2]) != # && PrimeQ[r] &] (* Amiram Eldar, Jul 28 2025 *)
-
Python
from sympy import isprime def ok(n): r = int(bin(n)[2:][::-1], 2) return n != r and isprime(n) and isprime(r) print([k for k in range(600) if ok(k)]) # Michael S. Branicky, Jul 30 2022
Comments