A080843 Tribonacci word: limit S(infinity), where S(0) = 0, S(1) = 0,1, S(2) = 0,1,0,2 and for n >= 0, S(n+3) = S(n+2) S(n+1) S(n).
0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2
Offset: 0
Examples
From _Joerg Arndt_, Mar 12 2013: (Start) The first few steps of the substitution are Start: 0 Rules: 0 --> 01 1 --> 02 2 --> 0 ------------- 0: (#=1) 0 1: (#=2) 01 2: (#=4) 0102 3: (#=7) 0102010 4: (#=13) 0102010010201 5: (#=24) 010201001020101020100102 6: (#=44) 01020100102010102010010201020100102010102010 7: (#=81) 010201001020101020100102010201001020101020100102010010201010201001020102010010201 (End) From _Wolfdieter Lang_, Aug 14 2018: (Start) The levels l of the tree TriT begin (the branches (edges) have been omitted): Substitution rule: 0 -> 0 1; 1 -> 0 2; 2 -> 0. l=1: 0 l=2: 0 1 l=3: 0 1 0 2 l=4: 0 1 0 2 0 1 0 l=5: 0 1 0 2 0 1 0 0 1 0 2 0 1 ... ---------------------------------------------------------------------------------- n = 0 1 2 3 4 5 6 7 8 9 10 11 12 The tribonacci representation of n >= 0 (A278038; here at level 5 for n = 0.. 12) is obtained by reading from bottom to top (along the branches not shown) replacing 2 with 1, omitting the last 0 except for n = 0. 0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 E.g., ZTri(9) = A278038(9) = 1010. (End)
References
- The entry A092782 has a more complete list of references and links. - N. J. A. Sloane, Aug 17 2018
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 246.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..20000
- Jean Berstel and J. Karhumaki, Combinatorics on words - a tutorial, Bull. EATCS, #79 (2003), pp. 178-228.
- Nataliya Chekhova, Pascal Hubert, and Ali Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, Journal de théorie des nombres de Bordeaux, 13.2 (2001): 371-394.
- D. Damanik and L. Q. Zamboni, Arnoux-Rauzy subshifts: linear recurrence, powers and palindromes, arXiv:math/0208137 [math.CO], 2002.
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Eric Duchêne and Michel Rigo, A morphic approach to combinatorial games: the Tribonacci case. RAIRO - Theoretical Informatics and Applications, 42, 2008, pp 375-393. doi:10.1051/ita:2007039. [Also available here]
- Robbert Fokkink and Dan Rust, Queen reflections: a modification of Wythoff Nim, Int'l J. Game Theory (2022).
- Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv:1810.09787v1 [math.NT], 2018.
- Joseph Meleshko, Pascal Ochem, Jeffrey Shallit, and Sonja Linghui Shan, Pseudoperiodic Words and a Question of Shevelev, arXiv:2207.10171 [math.CO], 2022.
- Aayush Rajasekaran, Narad Rampersad and Jeffrey Shallit, Overpals, Underlaps, and Underpals, In: Brlek S., Dolce F., Reutenauer C., Vandomme É. (eds) Combinatorics on Words, WORDS 2017, Lecture Notes in Computer Science, vol 10432.
- Gérard Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110.2 (1982): 147-178. See page 148.
- Bo Tan and Zhi-Ying Wen, Some properties of the Tribonacci sequence, European Journal of Combinatorics, 28 (2007) 1703-1719.
- O. Turek, Abelian Complexity Function of the Tribonacci Word, J. Int. Seq. 18 (2015) # 15.3.4
- Index entries for sequences that are fixed points of mappings
Crossrefs
Programs
-
Maple
M:=17; S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`; for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od: t0:=S[M]: l:=length(t0); for i from 1 to l do lprint(i,substring(t0,i..i)); od: # N. J. A. Sloane, Nov 01 2006 # A version that uses the letters a,b,c: M:=10; B[1]:=`a`; B[2]:=`ab`; B[3]:=`abac`; for n from 4 to M do B[n]:=cat(B[n-1], B[n-2], B[n-3]); od: B[10]; # N. J. A. Sloane, Oct 30 2018
-
Mathematica
Nest[Flatten[ # /. {0 -> {0, 1}, 1 -> {0, 2}, 2 -> {0}}] &, {0}, 8] (* updated by Robert G. Wilson v, Nov 07 2010 *) SubstitutionSystem[{0->{0,1},1->{0,2},2->{0}},{0},{8}]//Flatten (* Harvey P. Dale, Nov 21 2021 *)
-
PARI
strsub(s, vv, off=0)= { my( nl=#vv, r=[], ct=1 ); while ( ct <= #s, r = concat(r, vv[ s[ct] + (1-off) ] ); ct += 1; ); return( r ); } t=[0]; for (k=1, 10, t=strsub( t, [[0,1], [0,2], [0]], 0 ) ); t \\ Joerg Arndt, Sep 14 2013
Formula
Fixed point of morphism 0 -> 0, 1; 1 -> 0, 2; 2 -> 0.
a(n) = A092782(n+1) - 1. - Joerg Arndt, Sep 14 2013
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
Comments