cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080917 Number of integer solutions to the equation 2*x^2 + y^2 + 8*z^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 2, 0, 4, 0, 4, 10, 4, 12, 8, 0, 8, 0, 6, 16, 6, 12, 8, 0, 4, 0, 8, 10, 12, 16, 0, 0, 8, 0, 12, 16, 8, 24, 10, 0, 12, 0, 8, 32, 8, 12, 24, 0, 8, 0, 8, 18, 14, 24, 8, 0, 16, 0, 16, 16, 4, 36, 0, 0, 16, 0, 6, 32, 16, 12, 16, 0, 8, 0, 12, 16, 20, 28, 24, 0, 8, 0, 24, 34, 8, 36, 16, 0
Offset: 0

Views

Author

Michael Somos, Feb 23 2003

Keywords

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 2*q^4 + 4*q^6 + 4*q^8 + 10*q^9 + 4*q^10 + ...
		

Crossrefs

Cf. A000122 (theta_3(q)), A033717, A072068, A080918.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^8], {q, 0, n}]; (* Michael Somos, Feb 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^3 * eta(x^16 + A)^5 / (eta(x + A) * eta(x^8 + A)^2 * eta(x^32 + A))^2, n))};

Formula

Euler transform of period-32 sequence [2, -1, 2, -4, 2, -1, 2, 0, 2, -1, 2, -4, 2, -1, 2, -5, 2, -1, 2, -4, 2, -1, 2, 0, 2, -1, 2, -4, 2, -1, 2, -3, ...].
G.f.: theta_3(q) * theta_3(q^2) * theta_3(q^8).
a(2*n - 1) = A072068(n). a(2*n) = A033717(n).