A080940 Smallest proper divisor of n which is a suffix of n in binary representation; a(n) = 0 if no such divisor exists.
0, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8
Offset: 1
Examples
n=6='110', divisors<6: 1='1', 2='10' and 3='11', therefore a(6)=2='10'; n=7='111', divisors<7: 1='1', therefore a(7)=1; n=8='1000', divisors<8: 1='1', 2='10' and 4='100', therefore a(8)=0.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List (isPrefixOf); import Data.Function (on) a080940 n = if null ds then 0 else head ds where ds = filter ((flip isPrefixOf `on` a030308_row) n) $ a027751_row n -- Reinhard Zumkeller, Mar 27 2014
-
Python
def A080940(n): return (m:=n&-n)*(m!=n) # Chai Wah Wu, Jun 20 2023
Extensions
Definition improved by Reinhard Zumkeller, Mar 27 2014
Comments