cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080942 Number of divisors of n that are also suffixes of n in binary representation.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 25 2003

Keywords

Comments

a(n) = 1 iff n = 2^k (A000079), the only divisor is n itself.
For a(n) > 1 the other trivial divisor is 1 for odd numbers and 2 for even numbers (A057716).

Examples

			n=63 has A000005(63)=6 divisors: 1='1', 3='11', 7='111', 9='1001', 21='10101' and 63='111111', {1,11,111,111111} are also suffixes of 111111, therefore a(63)=4.
		

Crossrefs

Programs

  • Haskell
    import Data.List (isPrefixOf); import Data.Function (on)
    a080942 n = length $
                filter ((flip isPrefixOf `on` a030308_row) n) $ a027750_row n
    -- Reinhard Zumkeller, Mar 27 2014
    
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[n, 2^BitLength[#]] == # &]; Array[a, 100] (* Amiram Eldar, Apr 07 2023 *)
  • Python
    from sympy import divisors
    def A080942(n): return sum(1 for d in divisors(n,generator=True) if not (d^n)&((1<Chai Wah Wu, Jun 20 2023

Formula

a(A080943(n)) = 2.
a(A080945(n)) > 2.
a(A080946(n)) = 3.
a(A080947(n)) > 3.
a(n) <= A000005(n).
a(p) = 2 for odd primes p.
a(A080948(n)) = n and a(m) < n for m < A080948(n).