A080942 Number of divisors of n that are also suffixes of n in binary representation.
1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2
Offset: 1
Examples
n=63 has A000005(63)=6 divisors: 1='1', 3='11', 7='111', 9='1001', 21='10101' and 63='111111', {1,11,111,111111} are also suffixes of 111111, therefore a(63)=4.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.List (isPrefixOf); import Data.Function (on) a080942 n = length $ filter ((flip isPrefixOf `on` a030308_row) n) $ a027750_row n -- Reinhard Zumkeller, Mar 27 2014
-
Mathematica
a[n_] := DivisorSum[n, 1 &, Mod[n, 2^BitLength[#]] == # &]; Array[a, 100] (* Amiram Eldar, Apr 07 2023 *)
-
Python
from sympy import divisors def A080942(n): return sum(1 for d in divisors(n,generator=True) if not (d^n)&((1<
Chai Wah Wu, Jun 20 2023
Comments