cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080973 A014486-encoding of the "Moose trees".

Original entry on oeis.org

2, 52, 14952, 4007632, 268874213792, 68836555442592, 4561331969745081152, 300550070677246403229312, 1294530259719904904564091957759232, 331402554328705507772604330809117952
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Comments

Meeussen's observation about the orbits of a composition of two involutions F and R states that if the orbit size of the composition (acting on a particular element of the set) is odd, then it contains an element fixed by the other involution if and only if it contains also an element fixed by the other, on the (almost) opposite side of the cycle. Here those two involutions are A057163 and A057164, their composition is Donaghey's "Map M" A057505 and as the trees A080293/A080295 are symmetric as binary trees and the cycle sizes A080292 are odd, it follows that these are symmetric as general trees.

Crossrefs

Same sequence in binary: A080974. A036044(a(n)) = a(n) for all n. The number of edges (as general trees): A080978.

Formula

a(n) = A014486(A080975(n)) = A014486(A057505^((A080292(n)+1)/2) (A080293(n))) [where ^ stands for the repeated applications of permutation A057505.]