cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A346055 Expansion of e.g.f. Product_{k>=1} B(x^k/k) where B(x) = exp(exp(x) - 1) = e.g.f. of Bell numbers.

Original entry on oeis.org

1, 1, 3, 10, 47, 246, 1617, 11586, 97463, 891610, 9189623, 102024396, 1250714445, 16351489116, 232261545869, 3499469551402, 56582677946675, 964734301550142, 17509882651329087, 333381717125596692, 6710286637806825557, 141167551783524139468
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2021

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, exp(exp(x^k/k)-1))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, exp(x^k/k)-1))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sumdiv(k, d, 1/(d!*(k/d)^d))*x^k))))
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sumdiv(k, d, 1/(d!*(k/d)^d))*a(n-k)/(n-k)!));

Formula

E.g.f.: exp( Sum_{k>=1} (exp(x^k/k) - 1) ).
E.g.f.: exp( Sum_{k>=1} A005225(k)*x^k/k! ).
a(n) = (n-1)! * Sum_{k=1..n} k * (Sum_{d|k} 1/(d! * (k/d)^d)) * a(n-k)/(n-k)! for n > 0.

A346056 Expansion of e.g.f. Product_{k>=1} B(x^k/k!) where B(x) = exp(exp(x) - 1) = e.g.f. of Bell numbers.

Original entry on oeis.org

1, 1, 3, 9, 38, 168, 915, 5225, 34228, 236622, 1805297, 14498751, 125907798, 1146476984, 11129874215, 112934907867, 1209762361679, 13499714095281, 157931096158594, 1918777335806274, 24309294470496502, 318987321135326838, 4346474397776153974
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2021

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, exp(exp(x^k/k!)-1))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, exp(x^k/k!)-1))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sumdiv(k, d, 1/(d!*(k/d)!^d))*x^k))))
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sumdiv(k, d, 1/(d!*(k/d)!^d))*a(n-k)/(n-k)!));

Formula

E.g.f.: exp( Sum_{k>=1} (exp(x^k/k!) - 1) ).
E.g.f.: exp( Sum_{k>=1} A038041(k)*x^k/k! ).
a(n) = (n-1)! * Sum_{k=1..n} k * (Sum_{d|k} 1/(d! * (k/d)!^d)) * a(n-k)/(n-k)! for n > 0.

A352607 Triangle read by rows. T(n, k) = Bell(k)*Sum_{j=0..k}(-1)^(k+j)*binomial(n, n-k+j)*Stirling2(n-k+j, j) for n >= 0 and 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 6, 0, 1, 20, 0, 1, 50, 75, 0, 1, 112, 525, 0, 1, 238, 2450, 1575, 0, 1, 492, 9590, 18900, 0, 1, 1002, 34125, 141750, 49140, 0, 1, 2024, 114675, 854700, 900900, 0, 1, 4070, 371580, 4544925, 9909900, 2110185
Offset: 0

Views

Author

Peter Luschny and Mélika Tebni, Mar 23 2022

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0;
[2] 0, 1;
[3] 0, 1;
[4] 0, 1,   6;
[5] 0, 1,  20;
[6] 0, 1,  50,   75;
[7] 0, 1, 112,  525;
[8] 0, 1, 238, 2450,  1575;
[9] 0, 1, 492, 9590, 18900;
		

Crossrefs

Cf. A028248 (row sums), A052515 (column 2), A081066, A008299, A000110, A137375.

Programs

  • Maple
    A352607 := (n, k) -> combinat:-bell(k)*add((-1)^(k+j)*binomial(n, n-k+j)* Stirling2(n-k+j, j), j = 0..k):
    seq(seq(A352607(n, k), k = 0..n/2), n = 0..12);
    # Second program:
    egf := k -> combinat[bell](k)*(exp(x) - 1 - x)^k/k!:
    A352607 := (n, k) -> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A352607(n, k), k = 0..n/2)), n=0..12);
    # Recurrence:
    A352607 := proc(n, k) option remember;
    if k > n/2 then 0 elif k = 0 then k^n else k*A352607(n-1, k) +
    combinat[bell](k)/combinat[bell](k-1)*(n-1)*A352607(n-2, k-1) fi end:
    seq(print(seq(A352607(n, k), k=0..n/2)), n=0..12); # Mélika Tebni, Mar 24 2022
  • Mathematica
    T[n_, k_] := BellB[k]*Sum[(-1)^(k+j)*Binomial[n, n-k+j]*StirlingS2[n-k+j, j], {j, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Oct 21 2023 *)

Formula

T(n, k) = (-1)^k*A000110(k)*A137375(n, k) = A000110(k)*A008299(n, k).
T(2*n, n) = A081066(n).
E.g.f. column k: Bell(k)*(exp(x) - 1 - x)^k / k!, k >= 0.
T(n, k) = Bell(k)*Sum_{j=0..k} Sum_{i=0..j} ((-1)^j*(k-j)^(n-i)*binomial(n, i)) / ((k - j)!*(j - i)!).

A352608 a(n) = Bell(n)*n!!.

Original entry on oeis.org

1, 1, 4, 15, 120, 780, 9744, 92085, 1589760, 19983915, 445344000, 7053735150, 194162549760, 3735730993995, 123152970608640, 2803291544678625, 108175188829962240, 2855475766145702700, 126726160086516695040, 3818865908630429932275, 192201344414226343526400
Offset: 0

Views

Author

Peter Luschny, Mar 23 2022

Keywords

Crossrefs

Programs

  • Maple
    seq(doublefactorial(n)*combinat:-bell(n), n=0..20);

Formula

a(n) = A000110(n)*A006882(n).
Showing 1-4 of 4 results.