cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081121 Numbers k such that Mordell's equation y^2 = x^3 - k has no integral solutions.

Original entry on oeis.org

3, 5, 6, 9, 10, 12, 14, 16, 17, 21, 22, 24, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 42, 43, 46, 50, 51, 52, 57, 58, 59, 62, 65, 66, 68, 69, 70, 73, 75, 77, 78, 80, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99
Offset: 1

Views

Author

T. D. Noe, Mar 06 2003

Keywords

Comments

Mordell's equation has a finite number of integral solutions for all nonzero k. Gebel computes the solutions for k < 10^5. Sequence A054504 gives k for which there are no integral solutions to y^2 = x^3 + k. See A081120 for the number of integral solutions to y^2 = x^3 - n.
This is the complement of A106265. - M. F. Hasler, Oct 05 2013
Numbers k such that A081120(k) = 0. - Charles R Greathouse IV, Apr 29 2015

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191.

Crossrefs

Programs

  • Mathematica
    m = 99; f[_List] := (xm = 2 xm; ym = Ceiling[xm^(3/2)];
    Complement[Range[m], Outer[Plus, -Range[0, ym]^2, Range[-xm, xm]^3] //Flatten //Union]); xm=10; FixedPoint[f, {}] (* Jean-François Alcover, Apr 29 2011 *)