A081121 Numbers k such that Mordell's equation y^2 = x^3 - k has no integral solutions.
3, 5, 6, 9, 10, 12, 14, 16, 17, 21, 22, 24, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 42, 43, 46, 50, 51, 52, 57, 58, 59, 62, 65, 66, 68, 69, 70, 73, 75, 77, 78, 80, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99
Offset: 1
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191.
Links
- T. D. Noe, Table of n, a(n) for n = 1..7757 (from Gebel, 3136 and 6789 removed by _Seth A. Troisi_, May 20 2019)
- J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
- J. Gebel, A. Petho and G. Zimmer, On Mordell's equation, Compositio Mathematica 110 (3) (1998), 335-367. MR1602064.
- Eric Weisstein's World of Mathematics, Mordell Curve
Programs
-
Mathematica
m = 99; f[_List] := (xm = 2 xm; ym = Ceiling[xm^(3/2)]; Complement[Range[m], Outer[Plus, -Range[0, ym]^2, Range[-xm, xm]^3] //Flatten //Union]); xm=10; FixedPoint[f, {}] (* Jean-François Alcover, Apr 29 2011 *)
Comments