cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081197 Diagonal sums of A081130.

Original entry on oeis.org

0, 0, 0, 1, 4, 13, 44, 162, 643, 2724, 12259, 58423, 293902, 1555743, 8640526, 50222288, 304792741, 1927313470, 12673784445, 86517541197, 612134881624, 4482215342305, 33919417267456, 264951302794510, 2133720505175351
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Crossrefs

Cf. A081130.

Programs

  • Magma
    [n lt 3 select 0 else (&+[j^(n-j-2)*Binomial(n-j,2): j in [1..n-2]]): n in [0..30]]; // G. C. Greubel, May 15 2021
    
  • Maple
    A081197 := proc(n)
        add(k^(n-k-2)*binomial(n-k,2), k=1..n-2) ;
    end proc: # R. J. Mathar, Feb 13 2015
  • Mathematica
    Table[Sum[k^(n-k-2)*Binomial[n-k, 2], {k,n-2}], {n,0,30}] (* G. C. Greubel, May 15 2021 *)
  • Sage
    [sum( (n-k)^(k-2)*binomial(k,2) for k in (0..n-1) ) for n in (0..30)] # G. C. Greubel, May 15 2021

Formula

a(n) = Sum_{k=1..n-2} k^(n-k-2)*binomial(n-k, 2).
a(n) = Sum_{k=0..n-1} (n-k)^(k-2)*binomial(k, 2). - G. C. Greubel, May 15 2021

Extensions

Terms corrected by G. C. Greubel, May 15 2021