A081204 Staircase on Pascal's triangle.
1, 2, 3, 10, 15, 56, 84, 330, 495, 2002, 3003, 12376, 18564, 77520, 116280, 490314, 735471, 3124550, 4686825, 20030010, 30045015, 129024480, 193536720, 834451800, 1251677700, 5414950296, 8122425444, 35240152720, 52860229080, 229911617056
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
[Binomial(Ceiling((n)/2) + n, n): n in [0..30]]; // Vincenzo Librandi, Aug 07 2013
-
Mathematica
Table[Binomial[Ceiling[(n)/2] + n, n], {n, 0, 30}] (* Vincenzo Librandi, Aug 07 2013 *)
Formula
a(n) = binomial(ceiling((n)/2) + n, n).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1, k). - Paul Barry, Jul 06 2004
Conjecture: 4*n*(n+1)*(6*n^2 - 15*n + 8)*a(n) + 6*n*(9*n-7)*a(n-1) - 3*(3*n-4)*(3*n-2)*(6*n^2-3*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 07 2014
Conjecture: 8*n^2*(n+1)*a(n) - 12*n*(83*n^2 - 313*n + 232)*a(n-1) + 6*(-9*n^3 - 377*n + 384)*a(n-2) + 9*(3*n-5)*(83*n-64)*(3*n-7)*a(n-3) = 0. - R. J. Mathar, Nov 07 2014
Comments