cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081204 Staircase on Pascal's triangle.

Original entry on oeis.org

1, 2, 3, 10, 15, 56, 84, 330, 495, 2002, 3003, 12376, 18564, 77520, 116280, 490314, 735471, 3124550, 4686825, 20030010, 30045015, 129024480, 193536720, 834451800, 1251677700, 5414950296, 8122425444, 35240152720, 52860229080, 229911617056
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Arrange Pascal's triangle as a square array. This sequence is then a diagonal staircase on the square array.

Crossrefs

Programs

  • Magma
    [Binomial(Ceiling((n)/2) + n, n): n in [0..30]]; // Vincenzo Librandi, Aug 07 2013
  • Mathematica
    Table[Binomial[Ceiling[(n)/2] + n, n], {n, 0, 30}] (* Vincenzo Librandi, Aug 07 2013 *)

Formula

a(n) = binomial(ceiling((n)/2) + n, n).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1, k). - Paul Barry, Jul 06 2004
Conjecture: 4*n*(n+1)*(6*n^2 - 15*n + 8)*a(n) + 6*n*(9*n-7)*a(n-1) - 3*(3*n-4)*(3*n-2)*(6*n^2-3*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 07 2014
Conjecture: 8*n^2*(n+1)*a(n) - 12*n*(83*n^2 - 313*n + 232)*a(n-1) + 6*(-9*n^3 - 377*n + 384)*a(n-2) + 9*(3*n-5)*(83*n-64)*(3*n-7)*a(n-3) = 0. - R. J. Mathar, Nov 07 2014