A081234 Let p = n-th prime, take smallest solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and y >= 1; sequence gives value of y.
2, 1, 4, 3, 3, 180, 8, 39, 5, 1820, 273, 12, 320, 531, 7, 9100, 69, 226153980, 5967, 413, 267000, 9, 9, 53000, 6377352, 20, 22419, 93, 15140424455100, 113296, 419775, 927, 519712, 6578829, 2113761020, 140634693, 3726964292220, 5019135, 13, 190060
Offset: 1
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[Last[cf]]; If[OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; Table[ PellSolve[ Prime[n]][[2]], {n, 40}] (* Robert G. Wilson v, Jul 22 2005 *)
Extensions
More terms (a(8) - a(40)) from Robert G. Wilson v, Jul 22 2005