A081240 a(n) = #{(i,j): mu(i)*mu(j) = 1, 1<=i,j<=n}, where mu = A008683 (Moebius function).
1, 2, 5, 5, 10, 13, 20, 20, 20, 25, 34, 34, 45, 52, 61, 61, 74, 74, 89, 89, 100, 113, 130, 130, 130, 145, 145, 145, 164, 185, 208, 208, 225, 244, 265, 265, 290, 313, 338, 338, 365, 394, 425, 425, 425, 452, 485, 485, 485, 485, 514, 514, 549, 549, 580, 580, 613
Offset: 1
Keywords
Examples
n mu(n) ... n: 1 2 3 4 5 6 7 8 - ------ .... |----------------> 1 .. +1 ..... | + - - 0 - + - 0 2 .. -1 ..... | - + + 0 + - + 0 3 .. -1 ..... | - + + 0 + - + 0 4 ... 0 ..... | 0 0 0 0 0 0 0 0 5 .. -1 ..... | - + + 0 + - + 0 a(8)=20, as there are 6 .. +1 ..... | + - - 0 - + - 0 20 '+1's in the 8x8-square 7 .. -1 ..... | - + + 0 + - + 0 (represented as '+') 8 ... 0 ..... | 0 0 0 0 0 0 0 0.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 520 terms from Reinhard Zumkeller)
Programs
-
Haskell
a081240 n = length [() | u <- [1..n], v <- [1..n], a008683 u * a008683 v == 1] -- Reinhard Zumkeller, Aug 03 2012
-
Mathematica
Table[Abs[Sum[Sqrt[MoebiusMu[i]],{i,1,n}]]^2,{n,60}] (* Enrique Pérez Herrero, Jul 30 2012 *)
Formula
a(n) = |Sum_{i=1..n} sqrt(mu(i))|^2. - Enrique Pérez Herrero, Jul 30 2012
Comments