A081258 Numbers k > 1 such that k^3 - 1 (or equivalently k^2 + k + 1) has no prime factor greater than k.
16, 18, 22, 30, 49, 67, 68, 74, 79, 81, 87, 100, 102, 121, 135, 137, 146, 149, 154, 158, 159, 163, 165, 169, 172, 178, 181, 191, 211, 221, 229, 230, 235, 256, 262, 263, 269, 273, 277, 291, 292, 301, 305, 313, 315, 324, 326, 334, 352, 361, 372, 373, 380, 393
Offset: 1
Examples
16 is a term: 16^3 - 1 = 4095 = 3*3*5*7*13.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA081258 := proc(n) numtheory[factorset](n^3-1) ; if max(op(%)) <= n then true; else false; end if; end proc; for n from 1 to 400 do if isA081258(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Oct 11 2011
-
Mathematica
Select[Range[2, 1000], FactorInteger[#^3 - 1][[-1, 1]] <= #&] (* Jean-François Alcover, Jun 15 2020 *)
Extensions
Name changed by Robert Israel, Nov 11 2016
Comments