A081271 Vertical of triangular spiral in A051682.
1, 13, 34, 64, 103, 151, 208, 274, 349, 433, 526, 628, 739, 859, 988, 1126, 1273, 1429, 1594, 1768, 1951, 2143, 2344, 2554, 2773, 3001, 3238, 3484, 3739, 4003, 4276, 4558, 4849, 5149, 5458, 5776, 6103, 6439, 6784, 7138, 7501, 7873, 8254, 8644, 9043, 9451
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
LinearRecurrence[{3,-3,1},{1,13,34},50] (* Harvey P. Dale, Aug 30 2025 *)
-
PARI
a(n)=(9*n^2+15*n+2)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: (1 + 10*x - 2*x^2)/(1 - x)^3.
a(n) = binomial(n,0) + 12*binomial(n,1) + 9*binomial(n,2).
a(n) = (9*n^2 + 15*n + 2)/2.
a(0) = 1, a(n) = a(n-1) + 9*n + 3 for n > 0 - Gerald McGarvey, Aug 18 2004
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: exp(x)*(1 + 12*x + 9*x^2/2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments