cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081277 Square array of unsigned coefficients of Chebyshev polynomials of the first kind.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 8, 4, 1, 7, 18, 20, 8, 1, 9, 32, 56, 48, 16, 1, 11, 50, 120, 160, 112, 32, 1, 13, 72, 220, 400, 432, 256, 64, 1, 15, 98, 364, 840, 1232, 1120, 576, 128, 1, 17, 128, 560, 1568, 2912, 3584, 2816, 1280, 256, 1, 19, 162, 816, 2688, 6048, 9408, 9984, 6912
Offset: 0

Views

Author

Paul Barry, Mar 16 2003

Keywords

Comments

Formatted as a triangular array, this is [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] (see construction in A084938 ). - Philippe Deléham, Aug 09 2005
Antidiagonal sums are in A025192. - Philippe Deléham, Dec 04 2006
Binomial transform of n-th row of the triangle (followed by zeros) = n-th row of the A142978 array and n-th column of triangle A104698. - Gary W. Adamson, Jul 17 2008
When formatted as a triangle, A038763=fusion of polynomial sequences (x+1)^n and (x+1)^n; see A193722 for the definition of fusion of two polynomial sequences or triangular arrays. Row n of A038763, as a triangle, consists of coefficients of the product (x+1)*(x+2)^n. - Clark Kimberling, Aug 04 2011

Examples

			Rows begin
  1, 1,  2,   4,   8, ...
  1, 3,  8,  20,  48, ...
  1, 5, 18,  56, 160, ...
  1, 7, 32, 120, 400, ...
  1, 9, 50, 220, 840, ...
  ...
As a triangle:
  1;
  1,  1;
  1,  3,  2;
  1,  5,  8,  4;
  1,  7, 18, 20,  8;
		

Crossrefs

Cf. A079628.
Cf. A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
Cf. A053120 (antidiagonals give signed version) and A124182 (skewed version). - Mathias Zechmeister, Jul 26 2022

Programs

  • Mathematica
    (* Program generates triangle A081277 as the self-fusion of Pascal's triangle *)
    z = 8; a = 1; b = 1; c = 1; d = 1;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A081277 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* abs val of A118800 *)
    Factor[w[6, x]]
    (* Clark Kimberling, Aug 04 2011 *)

Formula

T(n, k) = (n+2k)*binomial(n+k-1, k-1)*2^(n-1)/k, k > 0.
T(n, 0) defined by g.f. (1-x)/(1-2x). Other rows are defined by (1-x)/(1-2x)^n.
T(n, 0) = 0 if n < 0, T(0, k) = 0 if k < 0, T(0, 0) = T(1, 0) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k); for example, 160 = 48 + 2*56 for n = 4 and k = 2. -Philippe Deléham, Aug 12 2005
G.f. of the triangular interpretation: (-1+x*y)/(-1+2*x*y+x). - R. J. Mathar, Aug 11 2015