A081277 Square array of unsigned coefficients of Chebyshev polynomials of the first kind.
1, 1, 1, 1, 3, 2, 1, 5, 8, 4, 1, 7, 18, 20, 8, 1, 9, 32, 56, 48, 16, 1, 11, 50, 120, 160, 112, 32, 1, 13, 72, 220, 400, 432, 256, 64, 1, 15, 98, 364, 840, 1232, 1120, 576, 128, 1, 17, 128, 560, 1568, 2912, 3584, 2816, 1280, 256, 1, 19, 162, 816, 2688, 6048, 9408, 9984, 6912
Offset: 0
Examples
Rows begin 1, 1, 2, 4, 8, ... 1, 3, 8, 20, 48, ... 1, 5, 18, 56, 160, ... 1, 7, 32, 120, 400, ... 1, 9, 50, 220, 840, ... ... As a triangle: 1; 1, 1; 1, 3, 2; 1, 5, 8, 4; 1, 7, 18, 20, 8;
Links
- Robert Davis, Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020.
Crossrefs
Cf. A079628.
Cf. A053120 (antidiagonals give signed version) and A124182 (skewed version). - Mathias Zechmeister, Jul 26 2022
Programs
-
Mathematica
(* Program generates triangle A081277 as the self-fusion of Pascal's triangle *) z = 8; a = 1; b = 1; c = 1; d = 1; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A081277 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* abs val of A118800 *) Factor[w[6, x]] (* Clark Kimberling, Aug 04 2011 *)
Formula
T(n, k) = (n+2k)*binomial(n+k-1, k-1)*2^(n-1)/k, k > 0.
T(n, 0) defined by g.f. (1-x)/(1-2x). Other rows are defined by (1-x)/(1-2x)^n.
T(n, 0) = 0 if n < 0, T(0, k) = 0 if k < 0, T(0, 0) = T(1, 0) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k); for example, 160 = 48 + 2*56 for n = 4 and k = 2. -Philippe Deléham, Aug 12 2005
G.f. of the triangular interpretation: (-1+x*y)/(-1+2*x*y+x). - R. J. Mathar, Aug 11 2015
Comments