A081285 Table of coefficients of polynomials f_n(q) defined by 1/Product_{i>=1} (1-a q^i)^i = Sum_{n>=0} a^n q^n f_n(q) / ((q)n)^2, where (x)_n is the q-Pochhammer symbol, defined to be Product{i=0..n-1} (1-x q^i).
1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 2, 4, 2, 4, 2, 4, 2, 1, 0, 1, 1, 0, 1, 2, 4, 6, 7, 8, 12, 12, 14, 12, 12, 8, 7, 6, 4, 2, 1, 0, 1, 1, 0, 1, 2, 4, 6, 12, 12, 21, 26, 37, 40, 55, 52, 61, 60, 61, 52, 55, 40, 37, 26, 21, 12, 12, 6, 4, 2, 1, 0, 1, 1, 0, 1, 2, 4, 6, 12, 18, 26, 38, 57, 76
Offset: 0
Examples
f_0 = f_1 = 1, f_2 = 1+q^2, f_3 = 1+q^2+2q^3+q^4+q^6, so sequence begins 1; 1; 1,0,1; 1,0,1,2,1,0,1; ...
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; Exercise 4.20.
Links
- Alois P. Heinz, Rows n = 0..40, flattened
- Zhipeng Lu, Symmetric permutation invariants in some tensor products, arXiv:2103.02168 [math.CO], 2021.
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
Programs
-
Maple
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1, add(b(u-j, o+j-1)*x^(-u), j=1..u)+ add(b(u+j-1, o-j)*x^( o), j=1..o))) end: T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n, 0)): seq(T(n), n=0..10); # Alois P. Heinz, Apr 28 2018
-
Mathematica
qpoch[x_, n_] := Product[1-x*q^i, {i, 0, n-1}]; f[0]=1; f[n_] := f[n]=Together[Sum[ -(-1)^r q^Binomial[r, 2] qpoch[q^(n-r+1), r-1]*qpoch[q^(r+1), n-r]/qpoch[q, n-r] f[n-r], {r, 1, n}]]; Join@@Table[CoefficientList[f[n], q], {n, 0, 7}]
Formula
f_n(q) = Sum_{r=1..n} (-1)^(r+1) q^(r(r-1)/2) (q)(n-1) (q)_n / ((q)(r) ((q)(n-r))^2) f(n-r)(q) for n>=1.
Comments