A081310 Numbers having no representation as sum of a prime and an 3-smooth number.
1, 2, 36, 78, 96, 120, 126, 144, 156, 162, 186, 204, 210, 216, 222, 276, 288, 300, 306, 324, 328, 330, 336, 342, 366, 372, 378, 396, 408, 414, 426, 438, 456, 474, 486, 498, 516, 528, 534, 540, 546, 552, 562, 576, 582, 606, 612, 624, 630, 636, 666, 672, 690
Offset: 1
Keywords
Examples
For all primes p<36 the greatest prime factor of 36-p is >3: 36-2=2*17, 36-3=3*11, 36-5=31, 36-7=29, 36-11=5*5, 36-13=23, 36-17=19, 36-19=17, 36-23=13, 36-29=7, 36-31=5, therefore 36 is a term.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a081310 n = a081310_list !! (n-1) a081310_list = filter ((== 0) . a081308) [1..] -- Reinhard Zumkeller, Jul 04 2012
-
Mathematica
nmax = 1000; S = Select[Range[nmax], Max[FactorInteger[#][[All, 1]]] <= 3 &]; A081308[n_] := Count[TakeWhile[S, # < n &], s_ /; PrimeQ[n - s]]; Select[Range[nmax], A081308[#] == 0 &] (* Jean-François Alcover, Oct 13 2021 *)
Formula
A081308(a(n)) = 0.
Comments