cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081320 Largest 3-smooth divisor of n-th Fibonacci number.

Original entry on oeis.org

1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 144, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 288, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 432, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 576, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 144, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 864, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 144, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 1152, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 20 2003

Keywords

Comments

Conjecture: for n>12 and n>0 modulo 12: a(n)=a(n-12) and a(12*k)=A065331(k)*144.
The first part of the conjecture follows from the fact that the Fibonacci numbers are a strong divisibility sequence. - Charles R Greathouse IV, Sep 24 2012

Examples

			Fibonacci(36) = 14930352 = 2^4 * 3^3 * 17 * 19 * 107, therefore a(36) = 2^4 * 3^3 = 432.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ({2, 3}^IntegerExponent[Fibonacci[n], {2, 3}]);
    Table[a[n], {n, 1, 1000}] (* Jean-François Alcover, Oct 15 2021 *)
  • PARI
    fibord(n,p)=if(n==0, return(oo)); my(u=3,t); while((t=((Mod([1,1;1,0],p^u))^n)[1,2])==0, u*=2); valuation(t,p)
    a(n)=if(n%12, return(gcd(fibonacci(n%12),24))); 3^fibord(n,3)<Charles R Greathouse IV, Nov 13 2015

Formula

a(n) = A065331(A000045(n)).