A081326 Number of partitions of n into two 3-smooth numbers.
0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 0, 3, 2, 2, 2, 3, 1, 3, 1, 2, 3, 2, 2, 4, 1, 2, 2, 3, 1, 2, 1, 2, 2, 0, 0, 3, 1, 2, 2, 2, 0, 3, 1, 3, 2, 1, 1, 3, 0, 1, 2, 2, 1, 3, 1, 2, 0, 2, 0, 4, 2, 1, 2, 2, 0, 2, 0, 3, 2, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 0, 1, 0, 0, 3, 2, 1, 3, 2, 0, 2, 0, 2, 2
Offset: 1
Keywords
Examples
n=10 has a(10)=3 partitions into 3-smooth numbers: 10=1+3^2=2+2^3=2^2+2*3; n=9 has a(9)=2 partitions into 3-smooth numbers: 9=1+2^3=3+2*3.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..10000
- Ivars Peterson, Medieval Harmony.
- Eric Weisstein's World of Mathematics, Smooth Number.
Programs
-
Mathematica
nmax = 10000; S = Select[Range[nmax], Max[FactorInteger[#][[All, 1]]] <= 3 &]; P[n_] := IntegerPartitions[n, {2}, TakeWhile[S, # < n &] ]; a[n_] := P[n] // Length; Array[a, nmax] (* Jean-François Alcover, Oct 13 2021 *)
Comments