A081355 Levenshtein distance between n and n^2 in decimal representation.
0, 0, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 1, 2, 2, 2, 3, 2, 2, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 3, 2, 3, 4, 4, 4, 3, 3, 4, 4, 4, 2, 3, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 2, 4, 3, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3
Offset: 0
Links
- Michael Gilleland, Levenshtein Distance. [It has been suggested that this algorithm gives incorrect results sometimes. - _N. J. A. Sloane_]
Programs
-
Mathematica
levenshtein[s_List, t_List] := Module[{d, n = Length@s, m = Length@t}, Which[s === t, 0, n == 0, m, m == 0, n, s != t, d = Table[0, {m + 1}, {n + 1}]; d[[1, Range[n + 1]]] = Range[0, n]; d[[Range[m + 1], 1]] = Range[0, m]; Do[ d[[j + 1, i + 1]] = Min[d[[j, i + 1]] + 1, d[[j + 1, i]] + 1, d[[j, i]] + If[ s[[i]] === t[[j]], 0, 1]], {j, m}, {i, n}]; d[[ -1, -1]] ]]; f[n_] := levenshtein[IntegerDigits[n], IntegerDigits[n^2]]; Table[f[n], {n, 0, 104}] (* Robert G. Wilson v, Jan 25 2006 *)