A081377 Numbers n such that the set of prime divisors of phi(n) is equal to the set of prime divisors of sigma(n).
1, 3, 14, 35, 42, 70, 105, 119, 209, 210, 238, 248, 297, 357, 418, 477, 594, 595, 616, 627, 714, 744, 954, 1045, 1178, 1190, 1240, 1254, 1463, 1485, 1672, 1674, 1736, 1785, 1848, 1863, 2079, 2090, 2376, 2385, 2540, 2728, 2926, 2945, 2970, 3080, 3135, 3302
Offset: 1
Keywords
Examples
n=418=2*11*19: sigma(418)=720, phi[418]=180, common prime factor set ={2,3,5} k = 477 = 3*3*53: sigma(477) = 702 = 2*3*3*3*13; phi(477) = 312 = 2*2*2*3*13; common factor set: {2,3,13}. phi(89999)=66528=2^5*3^3*7*11 and sigma(89999)=118272=2^9*3*7*11 so 89999 is in the sequence.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Prime Puzzles, Puzzle 451
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] Do[s=ba[DivisorSigma[1, n]]; s1=ba[EulerPhi[n]]; If[Equal[s, s1], k=k+1; Print[n]], {n, 1, 10000}]
-
PARI
is(n)=factor(eulerphi(n=factor(n)))[,1]==factor(sigma(n))[,1] \\ Charles R Greathouse IV, Nov 27 2013
Extensions
Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Farideh Firoozbakht
Comments