A081394 a(n) is the smallest k such that number of non-unitary prime divisors of central binomial coefficient, A001405(k) = C(k, floor(k/2)) equals n.
1, 6, 10, 27, 96, 147, 363, 627, 959, 1547, 1919, 2641, 2645, 3339, 6241, 6909, 6913, 6943, 6923, 6937, 16405, 19981, 24325, 31675, 31679, 35329, 36959, 36963, 38915, 38927, 73563, 39729, 73577, 80095, 87205, 87309, 95035, 123307, 123305, 123369, 123367, 174239, 185915, 186361, 186369, 186373, 186381
Offset: 0
Keywords
Examples
n=8: a(8)=959, C(959,479) has 8 non-unitary prime divisors: {2,3,5,7,11,13,23,29} and 959 is the smallest.
Programs
-
Mathematica
seq[len_, kmax_] := Module[{s = Table[0, {len}], k = 1, c = 0, i}, While[c < len && k < kmax, i = Count[FactorInteger[Binomial[k, Floor[k/2]]][[;; , 2]], ?(# > 1 &)] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = k]; k++]; TakeWhile[s, # > 0 &]]; seq[20, 10^4] (* _Amiram Eldar, May 15 2023 *)
Formula
a(n) = Min{k; A056175(k) = n}.
Extensions
a(9)-a(19) from Michel Marcus, Sep 01 2019
a(20)-a(46) from Amiram Eldar, May 15 2023