cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081400 a(n) = d(n) - bigomega(n) - A005361(n).

Original entry on oeis.org

0, 0, 0, -1, 0, 1, 0, -2, -1, 1, 0, 1, 0, 1, 1, -3, 0, 1, 0, 1, 1, 1, 0, 1, -1, 1, -2, 1, 0, 4, 0, -4, 1, 1, 1, 1, 0, 1, 1, 1, 0, 4, 0, 1, 1, 1, 0, 1, -1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 6, 0, 1, 1, -5, 1, 4, 0, 1, 1, 4, 0, 1, 0, 1, 1, 1, 1, 4, 0, 1, -3, 1, 0, 6, 1, 1, 1, 1, 0, 6, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 4, 0, 1, 4, 1, 0, 1, 0, 4, 1, 1, 0, 4, 1, 1, 1, 1, 1, 8, -1, 1
Offset: 1

Views

Author

Labos Elemer, Mar 28 2003

Keywords

Examples

			Negative for true prime powers; zero for 1 and primes; see also A030231, A007304, A034683, A075819 etc. to judge about positivity or magnitude.
		

Crossrefs

Programs

  • PARI
    a(n) = my(f=factor(n)); numdiv(n) - bigomega(n) - prod(k=1, #f~, f[k,2]); \\ Michel Marcus, May 25 2017
    
  • Python
    from sympy import primefactors, factorint, divisor_count
    from operator import mul
    def bigomega(n): return 0 if n==1 else bigomega(n/primefactors(n)[0]) + 1
    def a005361(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [f[i] for i in f])
    def a(n): return divisor_count(n) - bigomega(n) - a005361(n) # Indranil Ghosh, May 25 2017

Formula

a(n) = A000005(n) - A001222(n) - A005361(n).