cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081420 Let f(1)=f(2)=1, f(k)=f(k-1)+f(k-2)+ (k (mod n)). Then f(k)=floor(r(n)*F(k))+g(k) where F(k) denotes the k-th Fibonacci number and g(k) a function becoming periodic. Sequence depends on r(n) which is the largest positive root of : a(3n-2)*X^2-a(3n-1)*X+a(3n)=0.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 4, 18, 19, 5, 25, 31, 11, 64, 89, 4, 24, 31, 29, 184, 236, 45, 285, 319, 76, 486, 499, 121, 759, 639, 199, 1230, 855, 20, 120, 59, 521, 3038, 916, 841, 4727, 341, 1364, 7386, 1189, 2205, 11445, 4889
Offset: 1

Views

Author

Benoit Cloitre, Apr 20 2003

Keywords

Comments

Usually a(3n-2)=A001350(n)

Examples

			If n=3 f(k)=floor(r(3)*F(k))+g(k) where r(3)=(9-sqrt(5))/4 is the root of 4*X^2-18*X+19=0 and g(k) is the 6-periodic sequence (0,0,-1,-1,0,-1)
		

Formula

It seems that limit n-->infinity r(n)=(9+sqrt(5))/2