cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A081456 Product of entries in n-th row of triangle in A081454.

Original entry on oeis.org

1, 4, 16, 36, 144, 1296, 14400, 57600, 518400, 6350400, 101606400, 914457600, 12294374400, 196709990400, 3292047360000, 44259747840000, 708155965440000, 17703899136000000, 269276305858560000, 4308420893736960000, 107710522343424000000, 3377801980689776640000
Offset: 1

Views

Author

Amarnath Murthy, Mar 21 2003

Keywords

Crossrefs

Formula

a(n) equals smallest integer square m^2 such that A086435(m^2)=n-1. - Max Alekseyev, Jul 16 2009

Extensions

More terms from David Garber, Jun 17 2003
More terms from Ray G. Opao, Aug 01 2005
Corrected and extended by R. J. Mathar, Nov 12 2006
More terms from Max Alekseyev, Jun 05, Jul 16 2009
Corrected and extended by Max Alekseyev, Jun 03 2023

A081457 a(n) = A081456(n)^(1/2).

Original entry on oeis.org

1, 2, 4, 6, 12, 36, 120, 240, 720, 2520, 10080, 30240, 110880, 443520, 1814400, 6652800, 26611200, 133056000, 518918400, 2075673600, 10378368000, 58118860800, 261534873600, 1270312243200, 5928123801600, 29640619008000, 168951528345600, 844757641728000, 4505374089216000, 25342729251840000
Offset: 1

Views

Author

Amarnath Murthy, Mar 21 2003

Keywords

Crossrefs

Formula

a(n) equals smallest integer m>0 such that A086435(m^2)=n-1. - Max Alekseyev, Jul 16 2009

Extensions

More terms from David Garber, Jun 17 2003
More terms from Ray G. Opao, Aug 01 2005
Corrected and extended by R. J. Mathar, Nov 12 2006
More terms from Max Alekseyev, Jun 05, Jul 16 2009
Corrected and extended by Max Alekseyev, Jun 03 2023

A081454 Triangle read by rows in which the n-th row contains n distinct numbers whose product is a square, which is minimal over all choices for n distinct numbers.

Original entry on oeis.org

1, 1, 4, 1, 2, 8, 1, 2, 3, 6, 1, 2, 3, 4, 6, 1, 2, 3, 4, 6, 9, 1, 2, 3, 5, 6, 8, 10, 1, 2, 3, 4, 5, 6, 8, 10, 1, 2, 3, 4, 5, 6, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 22
Offset: 1

Views

Author

Amarnath Murthy, Mar 21 2003

Keywords

Comments

In case there is more than one solution, choose the one where the maximal number is minimal.

Examples

			Triangle begins:
  1;
  1,  4;
  1,  2,  8;
  1,  2,  3,  6;
  1,  2,  3,  4,  6;
  1,  2,  3,  4,  6,  9;
  1,  2,  3,  5,  6,  8, 10;
  1,  2,  3,  4,  5,  6,  8, 10;
  1,  2,  3,  4,  5,  6,  8,  9, 10;
  ...
The 7th row could also be 1, 2, 3, 4, 5, 8, 15, but this has a larger last term.
		

Crossrefs

Programs

  • Maple
    A081454aux := proc(n,s,mfact) local d,findx,f ; if n = 1 then if s <= mfact then RETURN([s]) ; else RETURN([]) ; fi ; else d := numtheory[divisors](s) ; for findx from n to nops(d) do if op(findx,d) <= mfact then f := A081454aux(n-1,s/op(findx,d),op(findx,d)-1) ; if nops(f) <> 0 then RETURN([op(f),op(findx,d)]) ; fi ; fi ; od ; RETURN([]) ; fi ; end: A081454row := proc(n) local p,s,d,findx,f ; p :=1 ; s :=1 ; while true do d := numtheory[divisors](s) ; if nops(d) >= n then if n = 1 then RETURN([1]) ; else for findx from n to nops(d) do f := A081454aux(n-1,s/op(findx,d),op(findx,d)-1) ; if nops(f) <> 0 then RETURN([op(f),op(findx,d)]) ; fi ; od; fi ; fi ; p := p+1 ; s := p^2 ; od ; end: for n from 1 to 14 do r := A081454row(n) : for i from 1 to n do printf("%d,",op(i,r) ) ; od ; od : # R. J. Mathar, Nov 12 2006
  • Mathematica
    T[n_] := T[n] = SortBy[MinimalBy[Select[Subsets[Range[2n+2], {n}], #[[1]] == 1 && IntegerQ@Sqrt[Times @@ #]&], Times @@ #&], Last] // First;
    Table[Print[n, " ", T[n]]; T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jun 03 2023 *)

Extensions

Edited and extended by David Garber, Jun 17 2003
More terms from Ray G. Opao, Aug 01 2005
Corrected and extended by R. J. Mathar, Nov 12 2006
More terms from Max Alekseyev, Apr 25 2009
Correct row #13 conjectured by Jean-François Alcover and confirmed by Max Alekseyev, Jun 03 2023
Showing 1-3 of 3 results.