A081458 Table T(m,n) = (3^m + 5^n)/2, for m, n = 0, 2, 4, 6, ... read by antidiagonals downwards.
1, 13, 5, 313, 17, 41, 7813, 317, 53, 365, 195313, 7817, 353, 377, 3281, 4882813, 195317, 7853, 677, 3293, 29525, 122070313, 4882817, 195353, 8177, 3593, 29537, 265721, 3051757813, 122070317, 4882853, 195677, 11093, 29837, 265733, 2391485, 76293945313, 3051757817, 122070353, 4883177, 198593, 37337, 266033, 2391497, 21523361
Offset: 0
Examples
The array (5^x+3^y)/2; x,y=0,2,4,... starts as follows: [ 1 13 313 7813 195313 4882813 122070313 ...] [ 5 17 317 7817 195317 4882817 122070317 ...] [ 41 53 353 7853 195353 4882853 122070353 ...] [ 365 377 677 8177 195677 4883177 122070677 ...] [ 3281 3293 3593 11093 198593 4886093 122073593 ...] [ 29525 29537 29837 37337 224837 4912337 122099837 ...] [265721 265733 266033 273533 461033 5148533 122336033 ...] [ ... ]
Links
- G. C. Greubel, Antidiagonal rows n = 1..100, flattened
Crossrefs
Submatrix (even rows & cols) of A193770 (transposed). The values are listed in A193769 (subsequence of every other term). - M. F. Hasler, Jan 01 2013
Programs
-
GAP
Flat(List([0..9], n-> List([0..n], k-> (5^(2*(n-k)) +3^(2*k))/2 ))); # G. C. Greubel, Aug 13 2019
-
Magma
A081458:= func< n,k | (5^(2*(n-k)) +3^(2*k))/2 >; [A081458(n,k): k in [0..n], n in [0..9]]; // G. C. Greubel, Aug 13 2019
-
Mathematica
Table[(5^(2*(n-k)) +3^(2*k))/2, {n,0,9}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 13 2019 *)
-
PARI
matrix(7,7,y,x,(3^(y*2-2) + 5^(x*2-2))/2) \\ M. F. Hasler, Jan 01 2013
-
PARI
A081458(n,k) = (5^(2*(n-k)) +3^(2*k))/2; for(n=0,9, for(k=0,n, print1(A081458(n,k), ", "))) \\ G. C. Greubel, Aug 13 2019
-
Sage
def T(n, k): return (5^(2*(n-k)) +3^(2*k))/2 [[T(n, k) for k in (0..n)] for n in (0..9)] # G. C. Greubel, Aug 13 2019
Formula
Each row of the table obeys the recurrence relation a(n) = 26*a(n-1) - 25*a(n-2), n>1. Let M = the 2 X 2 matrix [13, 12; 12, 13]. Then T[1,n] = left term in M^n *[1,0]. - Gary W. Adamson, Jun 27 2006, edited by M. F. Hasler, Jan 01 2013
Extensions
Edited and extended by M. F. Hasler, Jan 01 2013
Comments