A081551 Triangle, read by rows, in which the n-th row contains n smallest n-digit numbers.
1, 10, 11, 100, 101, 102, 1000, 1001, 1002, 1003, 10000, 10001, 10002, 10003, 10004, 100000, 100001, 100002, 100003, 100004, 100005, 1000000, 1000001, 1000002, 1000003, 1000004, 1000005, 1000006, 10000000, 10000001, 10000002, 10000003, 10000004, 10000005, 10000006, 10000007
Offset: 1
Examples
Triangle begins as: 1; 10, 11; 100, 101, 102; 1000, 1001, 1002, 1003; 10000, 10001, 10002, 10003, 10004; 100000, 100001, 100002, 100003, 100004, 100005;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Mithun Kumar Das, Pramod Eyyunni, and Bhuwanesh Rao Patil, Sparse subsets of the natural numbers and Euler's totient function, arXiv:1907.09847v1 [math.NT] 23 Jul 2019.
Programs
-
Mathematica
Table[10^(n-1) +k-1, {n,12}, {k,n}]//Flatten (* G. C. Greubel, May 27 2021 *)
-
Sage
flatten([[10^(n-1) +k-1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, May 27 2021
Formula
From Franz Vrabec, Jul 28 2019: (Start)
T(n, k) = 10^(n-1) + k - 1.
As a one-dimensional sequence: a(n) = 10^m + n - (m^2 + m + 2)/2 where m = floor((-1 + sqrt(8*n-7))/2). (End)
Extensions
More terms from Philippe Deléham, Mar 28 2009
Comments