cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081572 Square array of binomial transforms of Fibonacci numbers, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 13, 5, 1, 5, 17, 35, 34, 8, 1, 6, 26, 75, 125, 89, 13, 1, 7, 37, 139, 338, 450, 233, 21, 1, 8, 50, 233, 757, 1541, 1625, 610, 34, 1, 9, 65, 363, 1490, 4172, 7069, 5875, 1597, 55, 1, 10, 82, 535, 2669, 9633, 23165, 32532, 21250, 4181, 89
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Array rows are solutions of the recurrence a(n) = (2*k+1)*a(n-1) - A028387(k-1)*a(n-2), where a(0) = 1 and a(1) = k+1.

Examples

			The array rows begins as:
  1, 1,  2,   3,    5,     8,     13, ... A000045;
  1, 2,  5,  13,   34,    89,    233, ... A001519;
  1, 3, 10,  35,  125,   450,   1625, ... A081567;
  1, 4, 17,  75,  338,  1541,   7069, ... A081568;
  1, 5, 26, 139,  757,  4172,  23165, ... A081569;
  1, 6, 37, 233, 1490,  9633,  62753, ... A081570;
  1, 7, 50, 363, 2669, 19814, 148153, ... A081571;
Antidiagonal triangle begins as:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  5,   3;
  1, 4, 10,  13,   5;
  1, 5, 17,  35,  34,    8;
  1, 6, 26,  75, 125,   89,   13;
  1, 7, 37, 139, 338,  450,  233,  21;
  1, 8, 50, 233, 757, 1541, 1625, 610, 34;
		

Crossrefs

Array row n: A000045 (n=0), A001519 (n=1), A081567 (n=2), A081568 (n=3), A081569 (n=4), A081570 (n=5), A081571 (n=6).
Array column k: A000027 (k=1), A002522 (k=2).
Different from A073133.
Cf. A028387.

Programs

  • Magma
    A081572:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j+1)*(n-k)^(k-j): j in [0..k]]) >;
    [A081572(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
    
  • Mathematica
    T[n_, k_]:= If[n==0, Fibonacci[k+1], Sum[Binomial[k, j]*Fibonacci[j+1]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2021 *)
  • Sage
    def A081572(n,k): return sum( binomial(k,j)*fibonacci(j+1)*(n-k)^(k-j) for j in (0..k) )
    flatten([[A081572(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021

Formula

Rows are successive binomial transforms of F(n+1).
T(n, k) = ((5+sqrt(5))/10)*( (2*n + 1 + sqrt(5))/2)^k + ((5-sqrt(5)/10)*( 2*n + 1 - sqrt(5))/2 )^k.
From G. C. Greubel, May 27 2021: (Start)
T(n, k) = Sum_{j=0..k} binomial(k,j)*n^(k-j)*Fibonacci(j+1) (square array).
T(n, k) = Sum_{j=0..k} binomial(k,j)*(n-k)^(k-j)*Fibonacci(j+1) (antidiagonal triangle). (End)