A081572 Square array of binomial transforms of Fibonacci numbers, read by ascending antidiagonals.
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 13, 5, 1, 5, 17, 35, 34, 8, 1, 6, 26, 75, 125, 89, 13, 1, 7, 37, 139, 338, 450, 233, 21, 1, 8, 50, 233, 757, 1541, 1625, 610, 34, 1, 9, 65, 363, 1490, 4172, 7069, 5875, 1597, 55, 1, 10, 82, 535, 2669, 9633, 23165, 32532, 21250, 4181, 89
Offset: 0
Examples
The array rows begins as: 1, 1, 2, 3, 5, 8, 13, ... A000045; 1, 2, 5, 13, 34, 89, 233, ... A001519; 1, 3, 10, 35, 125, 450, 1625, ... A081567; 1, 4, 17, 75, 338, 1541, 7069, ... A081568; 1, 5, 26, 139, 757, 4172, 23165, ... A081569; 1, 6, 37, 233, 1490, 9633, 62753, ... A081570; 1, 7, 50, 363, 2669, 19814, 148153, ... A081571; Antidiagonal triangle begins as: 1; 1, 1; 1, 2, 2; 1, 3, 5, 3; 1, 4, 10, 13, 5; 1, 5, 17, 35, 34, 8; 1, 6, 26, 75, 125, 89, 13; 1, 7, 37, 139, 338, 450, 233, 21; 1, 8, 50, 233, 757, 1541, 1625, 610, 34;
Links
- G. C. Greubel, Antidiagonal rows n = 0..50, flattened
Crossrefs
Programs
-
Magma
A081572:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j+1)*(n-k)^(k-j): j in [0..k]]) >; [A081572(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
-
Mathematica
T[n_, k_]:= If[n==0, Fibonacci[k+1], Sum[Binomial[k, j]*Fibonacci[j+1]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2021 *)
-
Sage
def A081572(n,k): return sum( binomial(k,j)*fibonacci(j+1)*(n-k)^(k-j) for j in (0..k) ) flatten([[A081572(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021
Formula
Rows are successive binomial transforms of F(n+1).
T(n, k) = ((5+sqrt(5))/10)*( (2*n + 1 + sqrt(5))/2)^k + ((5-sqrt(5)/10)*( 2*n + 1 - sqrt(5))/2 )^k.
From G. C. Greubel, May 27 2021: (Start)
T(n, k) = Sum_{j=0..k} binomial(k,j)*n^(k-j)*Fibonacci(j+1) (square array).
T(n, k) = Sum_{j=0..k} binomial(k,j)*(n-k)^(k-j)*Fibonacci(j+1) (antidiagonal triangle). (End)
Comments