cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081592 A self generating sequence: "there are n a(n)'s in the sequence". Start with 1,2 and use the rule : "a(n)=k implies there are n following k's (k is 1 or 2)".

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, Apr 21 2003

Keywords

Comments

Lengths of runs of consecutive 1's or 2's are : 1,1,2,3,9,21,117,588 ...

Examples

			Sequence begins : 1,2 . Since a(1)=1 there is only one following "1", gives 1,2,1. Since a(2)=2 there are 2 following "2's", gives 1,2,1,2,2. Since a(3)=1 there are 3 following "1's" 1,2,1,2,2,1,1,1 etc.