cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081622 Number of 6-core partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 5, 9, 10, 12, 12, 14, 20, 20, 21, 23, 24, 24, 32, 29, 35, 36, 44, 47, 38, 47, 49, 52, 55, 58, 59, 64, 66, 71, 70, 78, 79, 88, 87, 90, 85, 87, 111, 104, 102, 107, 112, 113, 121, 113, 130, 130, 148, 153, 132, 147, 149, 156, 162, 149, 167, 160, 178, 180
Offset: 0

Views

Author

Michael Somos, Mar 24 2003

Keywords

Comments

Euler transform of period 6 sequence [ 1, 1, 1, 1, 1, -5, ...].
Expansion of q^(-35/24) * eta(q^6)^6 / eta(q) in powers of q.

Examples

			1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 5*x^6 + 9*x^7 + 10*x^8 + 12*x^9 + ...
q^35 + q^59 + 2*q^83 + 3*q^107 + 5*q^131 + 7*q^155 + 5*q^179 + 9*q^203 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^(6*k) + x * O(x^n))^6 / (1 - x^k)), n))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^6 / eta(x + A), n))}

Formula

G.f.: Product_{k>0} (1 - x^(6*k))^6 / (1 - x^k).