cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081666 n*3^(n-1)+A081567(n).

Original entry on oeis.org

1, 4, 16, 62, 233, 855, 3083, 10978, 38746, 135924, 474955, 1655789, 5766389, 20080608, 69976772, 244166410, 853410637, 2988825507, 10490538559, 36905911166, 130139760590, 459970519296, 1629395348591, 5784362027257
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Binomial transform of A081663.

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    LinearRecurrence[{11,-44,75,-45},{1,4,16,62},30] (* Harvey P. Dale, Aug 06 2022 *)

Formula

a(n)=A027471(n-1)+A081567(n) G.f.: (1-7x+16x^2-13x^3)/((3x - 1)^2(5x^2-5x+1))

A125100 Triangle read by rows: T(n,k) = Fibonacci(k+1)*binomial(n,k) + (k+1)*binomial(n,k+1) (0 <= k <= n).

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 9, 9, 3, 5, 16, 24, 16, 5, 6, 25, 50, 50, 30, 8, 7, 36, 90, 120, 105, 54, 13, 8, 49, 147, 245, 280, 210, 98, 21, 9, 64, 224, 448, 630, 616, 420, 176, 34, 10, 81, 324, 756, 1260, 1512, 1344, 828, 315, 55, 11, 100, 450, 1200, 2310, 3276, 3570, 2880, 1620
Offset: 0

Views

Author

Gary W. Adamson, Nov 20 2006

Keywords

Comments

Binomial transform of the bidiagonal matrix with the Fibonacci numbers (1, 1, 2, 3, 5, 8, ...) in the main diagonal and (1, 2, 3, ...) in the subdiagonal.
Sum of terms in row n = n*2^(n-1) + Fibonacci(2n+1) (A081663).

Examples

			First few rows of the triangle:
  1;
  2,   1;
  3,   4,   2;
  4,   9,   9,   3;
  5,  16,  24,  16,   5;
  6,  25,  50,  50,  30,   8;
  7,  36,  90, 120, 105,  54,  13;
  8,  49, 147, 245, 280, 210,  98,  21;
  ...
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=(n,k)->binomial(n,k)*fibonacci(k+1)+(k+1)*binomial(n,k+1): for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form

Extensions

Edited by N. J. A. Sloane, Nov 29 2006
Showing 1-2 of 2 results.