cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081673 Expansion of exp(3*x) - exp(x)*(1-BesselI_0(2*x)).

Original entry on oeis.org

1, 3, 11, 33, 99, 293, 869, 2579, 7667, 22821, 68001, 202799, 605229, 1807263, 5399195, 16136513, 48243347, 144275093, 431573297, 1291258319, 3864163769, 11565703931, 34622195135, 103656406949, 310377872861, 929465445743
Offset: 0

Views

Author

Paul Barry, Mar 28 2003

Keywords

Comments

Binomial transform of A081672.

Crossrefs

Programs

  • Maple
    Egf:= exp(3*x)-exp(x)*(1-BesselI(0,2*x)):
    S:= series(Egf,x,101):
    seq(coeff(S,x,n)*n!, n=0..100); # Robert Israel, Jun 03 2016
  • Mathematica
    CoefficientList[Series[E^(3*x)-E^x*(1-BesselI[0,2*x]), {x, 0, 50}], x] * Range[0, 50]! (* Vaclav Kotesovec, Jul 02 2015 *)

Formula

E.g.f. exp(3*x) - exp(x)*(1-BesselI_0(2*x)).
Conjecture: n*(2*n - 7)*a(n) +(-12*n^2 + 50*n - 33)*a(n-1) +(16*n^2 - 76*n + 87)*a(n-2) +3*(4*n^2 - 22*n + 27)*a(n-3) -9*(2*n-5)*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ 3^n * (1 + sqrt(3)/(2*sqrt(Pi*n))). - Vaclav Kotesovec, Jul 02 2015
From Robert Israel, Jun 03 2016: (Start)
E.g.f. A(x) satisfies
-27 A + (-63 x + 9) A' + (-18 x^2 + 42 x + 39) A'' + (12 x^2 + 68 x - 25) A''' + (16 x^2 - 58 x + 4) A'''' + (-12 x^2 + 11 x) A''''' + 2 x^2 A'''''' = 0.
This implies Mathar's conjectured recursion. (End)