cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A027914 T(n,0) + T(n,1) + ... + T(n,n), T given by A027907.

Original entry on oeis.org

1, 2, 6, 17, 50, 147, 435, 1290, 3834, 11411, 34001, 101400, 302615, 903632, 2699598, 8068257, 24121674, 72137547, 215786649, 645629160, 1932081885, 5782851966, 17311097568, 51828203475, 155188936431, 464732722872
Offset: 0

Views

Author

Keywords

Comments

Let b(n)=a(n) mod 2; then b(n)=1/2+(-1)^n*(1/2-A010060(floor(n/2))). - Benoit Cloitre, Mar 23 2004
Binomial transform of A027306. Inverse binomial transform of = A032443. Hankel transform is {1, 2, 3, 4, ..., n, ...}. - Philippe Deléham, Jul 20 2005
Sums of rows of the triangle in A111808. - Reinhard Zumkeller, Aug 17 2005
Number of 3-ary words of length n in which the number of 1's does not exceed the number of 0's. - David Scambler, Aug 14 2012
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 07 2022

Crossrefs

Programs

  • Haskell
    a027914 n = sum $ take (n + 1) $ a027907_row n
    -- Reinhard Zumkeller, Jan 22 2013
  • Maple
    a := n -> simplify((3^n + GegenbauerC(n,-n,-1/2))/2):
    seq(a(n), n=0..25); # Peter Luschny, May 12 2016
  • Mathematica
    CoefficientList[ Series[ (1 + x + Sqrt[1 - 2x - 3x^2])/(2 - 4x - 6x^2), {x, 0, 26}], x] (* Robert G. Wilson v, Jul 21 2015 *)
    Table[(3^n + Hypergeometric2F1[1/2 - n/2, -n/2, 1, 4])/2, {n, 0, 20}] (* Vladimir Reshetnikov, May 07 2016 *)
    f[n_] := Plus @@ Take[ CoefficientList[ Sum[x^k, {k, 0, 2}]^n, x], n +1]; Array[f, 26, 0] (* Robert G. Wilson v, Jan 30 2017 *)
  • PARI
    a(n)=sum(i=0,n,polcoeff((1+x+x^2)^n,i,x))
    
  • PARI
    a(n)=sum(i=0,n,sum(j=0,n,sum(k=0,j,if(i+j+k-n,0,(n!/i!/j!/k!)))))
    
  • PARI
    x='x+O('x^99); Vec((1+x+(1-2*x-3*x^2)^(1/2))/(2*(1-2*x-3*x^2))) \\ Altug Alkan, May 12 2016
    

Formula

a(n) = ( 3^n + A002426(n) )/2; lim n -> infinity a(n+1)/a(n) = 3; 3^n < 2*a(n) < 3^(n+1). - Benoit Cloitre, Sep 28 2002
From Benoit Cloitre, Jan 26 2003: (Start)
a(n) = (1/2) *( Sum{k = 0..n} binomial(n,k)*binomial(n-k,k) + 3^n );
a(n) = Sum_{k = 0..n} Sum_{i = 0..k} binomial(n,i)*binomial(n-i,k);
a(n) = 3^n/2*(1+c/sqrt(n)+O(n^-1/2)) where c=0.5... (End)
c = sqrt(3/Pi)/2 = 0.4886025119... - Vaclav Kotesovec, May 07 2016
a(n) = n!*Sum(i+j+k=n, 1/(i!*j!*k!)) 0<=i<=n, 0<=k<=j<=n. - Benoit Cloitre, Mar 23 2004
G.f.: (1+x+sqrt(1-2x-3x^2))/(2(1-2x-3x^2)); a(n) = Sum_{k = 0..n} floor((k+2)/2)*Sum_{i = 0..floor((n-k)/2)} C(n,i)*C(n-i,i+k)* ((k+1)/(i+k+1)). - Paul Barry, Sep 23 2005; corrected Jan 20 2008
D-finite with recurrence: n*a(n) +(-5*n+4)*a(n-1) +3*(n-2)*a(n-2) +9*(n-2)*a(n-3)=0. - R. J. Mathar, Dec 02 2012
G.f.: (1+x+1/G(0))/(2*(1-2*x-3*x^2)), where G(k)= 1 + x*(2+3*x)*(4*k+1)/(4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 30 2013
From Peter Bala, Jul 21 2015: (Start)
a(n) = [x^n]( 3*x - 1/(1 - x) )^n.
1 + x*exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + ... is the o.g.f. for A005773. (End)
a(n) = (3^n + GegenbauerC(n,-n,-1/2))/2. - Peter Luschny, May 12 2016

A025191 a(n) = Sum_{k=0..n} T(n,k), where T is the array defined in A025177.

Original entry on oeis.org

1, 1, 4, 11, 33, 97, 288, 855, 2544, 7577, 22590, 67399, 201215, 601017, 1795966, 5368659, 16053417, 48015873, 143649102, 429842511, 1286452725, 3850770081, 11528245602, 34517105907, 103360732956, 309543786441, 927106804368, 2776994293355
Offset: 0

Views

Author

Keywords

Comments

Conjectures: a(n) = A027914(n)-A027914(n-1) = (A081673(n)-A081673(n-1))/2.

Extensions

a(1) corrected by Jason Yuen, Aug 05 2024

A081672 Expansion of exp(2x) - exp(0) + BesselI_0(2x).

Original entry on oeis.org

1, 2, 6, 8, 22, 32, 84, 128, 326, 512, 1276, 2048, 5020, 8192, 19816, 32768, 78406, 131072, 310764, 524288, 1233332, 2097152, 4899736, 8388608, 19481372, 33554432, 77509464, 134217728, 308552056, 536870912, 1228859344
Offset: 0

Views

Author

Paul Barry, Mar 28 2003

Keywords

Comments

Inverse binomial transform of A081673.

Crossrefs

Programs

  • Maple
    1, seq(op([2^(2*k-1), 2^(2*k)+(2*k)!/k!^2]), k=1..30); # Robert Israel, Jun 03 2016
  • Mathematica
    CoefficientList[Series[1/Sqrt[1 - 4 z^2] + 1/(1 - 2 z) - 1, {z, 0, 20}], z] (* Benedict W. J. Irwin, Jun 03 2016 *)
    CoefficientList[Series[Exp[2*x] - 1 + BesselI[0, 2*x], {x, 0, 50}],
      x]*Range[0, 50]! (* G. C. Greubel, Jun 03 2016 *)
  • PARI
    a(n)=if(n,if(n%2,1,1+n!/(2^n*(n/2)!^2))<Charles R Greathouse IV, Jun 10 2016
    
  • PARI
    Vec(1/sqrt(1-4*x^2)+1/(1-2*x)-1) \\ Charles R Greathouse IV, Jun 10 2016

Formula

E.g.f.: exp(2x) - exp(0) + BesselI_0(2x).
Conjecture: n*a(n) +2*(1-n)*a(n-1) +4*(1-n)*a(n-2) +8*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 12 2012
a(n) ~ 2^n * (1+(1+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, Feb 04 2014
From Benedict W. J. Irwin, Jun 03 2016: (Start)
For odd n, a(n) = 2^n. For even n>0, a(n) = 2^n*(1+n!/(2^n*(n/2)!^2)).
G.f.: 1/sqrt(1-4*z^2) + 1/(1-2*z) - 1. (End)
E.g.f. satisfies y''' - (2*x-2)*y'' - (4*x + 2)*y' + (8*x-4)*y + 8x - 4 = 0, which implies Mathar's conjectured recurrence. - Robert Israel, Jun 03 2016
Showing 1-3 of 3 results.