cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081684 a(n) = 5^n - 4^n - 3^n - 2^n + 3.

Original entry on oeis.org

1, -1, -1, 29, 275, 1829, 10739, 59429, 318275, 1670789, 8656979, 44454629, 226827875, 1151991749, 5830280819, 29429454629, 148249811075, 745630312709, 3745590106259, 18797445635429, 94264432179875, 472428649241669, 2366562219717299, 11850466059333029, 59322887352366275, 296896476647946629
Offset: 0

Views

Author

Paul Barry, Mar 30 2003

Keywords

Comments

Inverse binomial transform of A081685.

Crossrefs

Cf. A081685.

Programs

  • Mathematica
    Table[5^n-4^n-3^n-2^n+3,{n,0,40}]  (* Harvey P. Dale, Apr 01 2011 *)

Formula

G.f.: (-1-254*x^4+266*x^3-99*x^2+16*x)/((x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009]
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(x)*(exp(4*x) - exp(3*x) - exp(2*x) - exp(x) + 3).
a(n) = 15*a(n-1) - 85*a(n-2) + 225*a(n-3) - 274*a(n-4) + 120*a(n-5) for n > 4. (End)

Extensions

a(24)-a(25) from Elmo R. Oliveira, Sep 12 2024

A081686 a(n) = 7^n - 6^n - 5^n - 4^n + 3*3^n.

Original entry on oeis.org

1, 1, -1, 19, 467, 5611, 53459, 455659, 3648707, 28119691, 211372019, 1562038699, 11405181347, 82545287371, 593501306579, 4245828252139, 30255066944387, 214924122640651, 1522971386761139, 10770190567911979, 76039651374633827, 536127709619251531, 3775797660906839699, 26567026101757594219
Offset: 0

Views

Author

Paul Barry, Mar 30 2003

Keywords

Comments

Binomial transform of A081685.

Crossrefs

Formula

G.f.: -(1326*x^4-886*x^3+219*x^2-24*x+1)/((3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)). [Colin Barker, Sep 07 2012]
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(3*x)*(exp(4*x) - exp(3*x) - exp(2*x) - exp(x) + 3).
a(n) = 25*a(n-1) - 245*a(n-2) + 1175*a(n-3) - 2754*a(n-4) + 2520*a(n-5) for n > 4. (End)

Extensions

a(22)-a(23) from Elmo R. Oliveira, Sep 12 2024
Showing 1-2 of 2 results.