cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081691 From P-positions in a certain game.

Original entry on oeis.org

0, 2, 6, 11, 20, 38, 71, 136, 265, 523, 1036, 2061, 4110, 8207, 16400, 32785, 65554, 131092, 262165, 524310, 1048599, 2097176, 4194329, 8388634, 16777243, 33554460, 67108893, 134217758, 268435487, 536870944, 1073741857, 2147483682
Offset: 0

Views

Author

N. J. A. Sloane, Apr 02 2003

Keywords

Crossrefs

Apart from initial zero, complement of A081690.

Formula

See A081690 for formulas.

Extensions

More terms from Vladeta Jovovic, Apr 04 2003

A081891 a(n) = 10^n - 9^n - 8^n - 7^n + 3*6^n.

Original entry on oeis.org

1, 4, 14, 64, 830, 14704, 228734, 3136144, 39450110, 468241264, 5338397054, 59140070224, 641540046590, 6850671429424, 72282030453374, 755587489260304, 7840735233590270, 80889167950995184, 830567232465613694, 8495462278285810384, 86620589245358801150, 880864903819470714544
Offset: 0

Views

Author

Paul Barry, Mar 30 2003

Keywords

Comments

Binomial transform of A081690.

Crossrefs

Cf. A081690.

Formula

G.f.: -(6684*x^4-2956*x^3+489*x^2-36*x+1)/((6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)). [Colin Barker, Aug 12 2012]
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(6*x)*(exp(4*x) - exp(3*x) - exp(2*x) - exp(x) + 3).
a(n) = 40*a(n-1) - 635*a(n-2) + 5000*a(n-3) - 19524*a(n-4) + 30240*a(n-5) for n > 4. (End)

Extensions

a(19)-a(21) from Elmo R. Oliveira, Sep 12 2024
Showing 1-2 of 2 results.