A081693 Define two sequences by A_n = mex{A_i,B_i : 0 <= i < n}, B_n = B_{n-1} + (A_n-A_{n-1})(A_n-A_{n-1}+1), where the mex of a set is the smallest nonnegative integer not in the set. Sequence gives B_n. A_n is in A081692.
0, 2, 8, 10, 12, 14, 16, 22, 28, 34, 40, 46, 48, 50, 52, 54, 60, 62, 64, 66, 68, 74, 76, 78, 80, 82, 88, 90, 92, 94, 96, 102, 104, 106, 108, 110, 116, 122, 128, 134, 140, 142, 144, 146, 148, 154, 160, 166, 172, 178, 180, 182, 184, 186, 192, 198, 204, 210, 216, 218
Offset: 0
Keywords
Links
- A. S. Fraenkel, Home Page
- A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
Programs
-
Mathematica
mex[{}]=0; mex[s_] := Complement[Range[0, 1+Max@@s], s][[1]]; A[0]=B[0]=0; A[n_] := A[n]=mex[Flatten[Table[{A[i], B[i]}, {i, 0, n-1}]]]; B[n_] := B[n]=B[n-1]+(A[n]-A[n-1])*(A[n]-A[n-1]+1); a := B
Extensions
More terms from Vladeta Jovovic, Apr 04 2003
Comments