A081735 Numbers k such that the k-th Motzkin number == 1 (mod k).
1, 3, 4, 5, 7, 11, 13, 17, 19, 23, 25, 29, 30, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
motzkin[0] = 1; motzkin[n_] := motzkin[n] = motzkin[n - 1] + Sum[motzkin[k] * motzkin[n - k - 2], {k, 0, n - 2}]; Select[Range[250], # == 1 || Mod[motzkin[#], #] == 1 &] (* Amiram Eldar, May 23 2022 *)
-
PARI
a001006(n) = polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/(2*x^2), n); for(n=1, 1e3, if((a001006(n)-1) % n == 0, print1(n, ", "))); \\ Altug Alkan, Jan 07 2016
Extensions
First term 1 prepended by Altug Alkan, Jan 07 2016
Comments