A081742 a(1)=1; then if n is a multiple of 3, a(n) = a(n/3) + 1; if n is not a multiple of 3 but even, a(n) = a(n/2) + 1; a(n) = a(n-1) + 1 otherwise.
1, 2, 2, 3, 4, 3, 4, 4, 3, 5, 6, 4, 5, 5, 5, 5, 6, 4, 5, 6, 5, 7, 8, 5, 6, 6, 4, 6, 7, 6, 7, 6, 7, 7, 8, 5, 6, 6, 6, 7, 8, 6, 7, 8, 6, 9, 10, 6, 7, 7, 7, 7, 8, 5, 6, 7, 6, 8, 9, 7, 8, 8, 6, 7, 8, 8, 9, 8, 9, 9, 10, 6, 7, 7, 7, 7, 8, 7, 8, 8, 5, 9, 10, 7, 8, 8, 8, 9, 10, 7, 8, 10, 8, 11, 12, 7, 8, 8, 8, 8, 9, 8
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) option remember; if n mod 3 = 0 then procname(n/3)+1 elif n::even then procname(n/2)+1 else procname(n-1)+1 fi end proc: f(1):= 1: map(f, [$1..200]); # Robert Israel, Apr 17 2023
-
Mathematica
a[n_] := a[n] = Which[n == 1, 1, Divisible[n, 3], a[n/3]+1, EvenQ[n], a[n/2]+1, True, a[n-1]+1]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 28 2023 *)
Formula
a(n)/log(n) is bounded.
Comments